Nuprl Lemma : isom-preserves-win2
∀g1,g2:SimpleGame.  (g1 ≅ g2 ⇒ win2(g1) ⇒ win2(g2))
Proof
Definitions occuring in Statement : 
isom-games: g1 ≅ g2, 
win2: win2(g), 
simple-game: SimpleGame, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
win2: win2(g), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
isom-games: g1 ≅ g2, 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
prop: ℙ, 
nat: ℕ, 
false: False, 
ge: i ≥ j , 
guard: {T}, 
uimplies: b supposing a, 
win2strat: win2strat(g;n), 
eq_int: (i =z j), 
subtract: n - m, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
cand: A c∧ B, 
top: Top, 
le: A ≤ B, 
less_than': less_than'(a;b), 
not: ¬A, 
strat2play: strat2play(g;n;s), 
squash: ↓T, 
true: True, 
subtype_rel: A ⊆r B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
play-item: moves[i], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
uiff: uiff(P;Q), 
seq-item: s[i], 
pi2: snd(t), 
nat_plus: ℕ+, 
less_than: a < b, 
sq_type: SQType(T), 
bfalse: ff, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
play-len: ||moves||, 
play-truncate: play-truncate(f;m)
Lemmas referenced : 
nat_wf, 
win2_wf, 
isom-games_wf, 
simple-game_wf, 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
strat2play_wf, 
win2strat_wf, 
istype-void, 
le_wf, 
istype-top, 
subtract-1-ge-0, 
le_weakening2, 
seq-comp_wf, 
sg-pos_wf, 
seq-comp-len, 
seq-comp-item, 
equal_wf, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
seq-len_wf, 
seq-item_wf, 
decidable__lt, 
istype-false, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
lelt_wf, 
sg-legal1_wf, 
le-add-cancel2, 
less-iff-le, 
subtract_wf, 
le_reflexive, 
add-associates, 
minus-one-mul, 
one-mul, 
add-mul-special, 
two-mul, 
mul-distributes-right, 
zero-mul, 
add-zero, 
not-le-2, 
add-swap, 
omega-shadow, 
eq_int_wf, 
le_weakening, 
assert_wf, 
bnot_wf, 
not_wf, 
equal-wf-base, 
int_subtype_base, 
decidable__le, 
bool_cases, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
condition-implies-le, 
minus-one-mul-top, 
minus-add, 
minus-minus, 
play-len_wf, 
uiff_transitivity, 
strat2play_subtype, 
sequence_wf, 
subtype_rel_transitivity, 
play-item_wf, 
add-is-int-iff, 
mul-associates, 
mul-distributes, 
mul-commutes, 
le-add-cancel-alt, 
sg-legal2_wf, 
seq-comp-truncate, 
play-truncate_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
sqequalHypSubstitution, 
Error :isect_memberFormation_alt, 
cut, 
hypothesis, 
isectElimination, 
thin, 
hypothesisEquality, 
rename, 
productElimination, 
introduction, 
Error :universeIsType, 
extract_by_obid, 
Error :inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
setElimination, 
sqequalRule, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
Error :lambdaEquality_alt, 
dependent_functionElimination, 
independent_pairEquality, 
axiomEquality, 
Error :isect_memberEquality_alt, 
independent_pairFormation, 
Error :dependent_set_memberEquality_alt, 
because_Cache, 
applyEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
Error :productIsType, 
Error :equalityIsType1, 
unionElimination, 
promote_hyp, 
addEquality, 
multiplyEquality, 
minusEquality, 
intEquality, 
Error :equalityIsType4, 
dependentIntersectionElimination, 
cumulativity, 
baseApply, 
closedConclusion, 
dependentIntersection_memberEquality, 
Error :setIsType, 
equalityElimination, 
setEquality, 
applyLambdaEquality, 
hyp_replacement
Latex:
\mforall{}g1,g2:SimpleGame.    (g1  \mcong{}  g2  {}\mRightarrow{}  win2(g1)  {}\mRightarrow{}  win2(g2))
Date html generated:
2019_06_20-PM-00_53_21
Last ObjectModification:
2019_01_02-PM-01_32_18
Theory : co-recursion-2
Home
Index