Nuprl Lemma : isom-preserves-win2

g1,g2:SimpleGame.  (g1 ≅ g2  win2(g1)  win2(g2))


Proof




Definitions occuring in Statement :  isom-games: g1 ≅ g2 win2: win2(g) simple-game: SimpleGame all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q win2: win2(g) uall: [x:A]. B[x] member: t ∈ T isom-games: g1 ≅ g2 exists: x:A. B[x] and: P ∧ Q prop: nat: false: False ge: i ≥  guard: {T} uimplies: supposing a win2strat: win2strat(g;n) eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt cand: c∧ B top: Top le: A ≤ B less_than': less_than'(a;b) not: ¬A strat2play: strat2play(g;n;s) squash: T true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q play-item: moves[i] int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q uiff: uiff(P;Q) seq-item: s[i] pi2: snd(t) nat_plus: + less_than: a < b sq_type: SQType(T) bfalse: ff bool: 𝔹 unit: Unit it: play-len: ||moves|| play-truncate: play-truncate(f;m)
Lemmas referenced :  nat_wf win2_wf isom-games_wf simple-game_wf nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf strat2play_wf win2strat_wf istype-void le_wf istype-top subtract-1-ge-0 le_weakening2 seq-comp_wf sg-pos_wf seq-comp-len seq-comp-item equal_wf squash_wf true_wf subtype_rel_self iff_weakening_equal seq-len_wf seq-item_wf decidable__lt istype-false not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel lelt_wf sg-legal1_wf le-add-cancel2 less-iff-le subtract_wf le_reflexive add-associates minus-one-mul one-mul add-mul-special two-mul mul-distributes-right zero-mul add-zero not-le-2 add-swap omega-shadow eq_int_wf le_weakening assert_wf bnot_wf not_wf equal-wf-base int_subtype_base decidable__le bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert_of_eq_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot condition-implies-le minus-one-mul-top minus-add minus-minus play-len_wf uiff_transitivity strat2play_subtype sequence_wf subtype_rel_transitivity play-item_wf add-is-int-iff mul-associates mul-distributes mul-commutes le-add-cancel-alt sg-legal2_wf seq-comp-truncate play-truncate_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  sqequalHypSubstitution Error :isect_memberFormation_alt,  cut hypothesis isectElimination thin hypothesisEquality rename productElimination introduction Error :universeIsType,  extract_by_obid Error :inhabitedIsType,  equalityTransitivity equalitySymmetry setElimination sqequalRule intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination Error :lambdaEquality_alt,  dependent_functionElimination independent_pairEquality axiomEquality Error :isect_memberEquality_alt,  independent_pairFormation Error :dependent_set_memberEquality_alt,  because_Cache applyEquality imageElimination universeEquality imageMemberEquality baseClosed instantiate Error :productIsType,  Error :equalityIsType1,  unionElimination promote_hyp addEquality multiplyEquality minusEquality intEquality Error :equalityIsType4,  dependentIntersectionElimination cumulativity baseApply closedConclusion dependentIntersection_memberEquality Error :setIsType,  equalityElimination setEquality applyLambdaEquality hyp_replacement

Latex:
\mforall{}g1,g2:SimpleGame.    (g1  \mcong{}  g2  {}\mRightarrow{}  win2(g1)  {}\mRightarrow{}  win2(g2))



Date html generated: 2019_06_20-PM-00_53_21
Last ObjectModification: 2019_01_02-PM-01_32_18

Theory : co-recursion-2


Home Index