Nuprl Lemma : coW-game-step-isom

[A:𝕌']
  ∀B:A ⟶ Type. ∀w,w':coW(A;a.B[a]). ∀t:coW-dom(a.B[a];w). ∀b:coW-dom(a.B[a];w').
    sg-normalize(coW-game(a.B[a];coW-item(w;t);coW-item(w';b))) ≅ coW-game(a.B[a];w;w')@<copath-cons(t;())
                                                                                        copath-cons(b;())
                                                                                        >


Proof




Definitions occuring in Statement :  coW-game: coW-game(a.B[a];w;w') copath-cons: copath-cons(b;x) copath-nil: () coW-item: coW-item(w;b) coW-dom: coW-dom(a.B[a];w) coW: coW(A;a.B[a]) sg-normalize: sg-normalize(g) sg-change-init: g@j isom-games: g1 ≅ g2 uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] pair: <a, b> universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T sg-pos: Pos(g) pi1: fst(t) sg-normalize: sg-normalize(g) sg-change-init: g@j spreadn: spread4 coW-game: coW-game(a.B[a];w;w') so_lambda: λ2x.t[x] so_apply: x[s] prop: less_than: a < b ge: i ≥  guard: {T} squash: T cand: c∧ B nat_plus: + nat: true: True top: Top subtract: m uimplies: supposing a uiff: uiff(P;Q) rev_implies:  Q iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) implies:  Q not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} subtype_rel: A ⊆B and: P ∧ Q exists: x:A. B[x] sg-reachable: sg-reachable(g;x;y) pi2: snd(t) sg-init: InitialPos(g) sq_stable: SqStable(P) copath: copath(a.B[a];w) sg-legal1: Legal1(x;y) sg-legal2: Legal2(x;y) coW-pos-agree: coW-pos-agree(a.B[a];w;w';p;q) copath-nil: () copath-length: copath-length(p) copath-cons: copath-cons(b;x) seq-comp: s seq-len: ||s|| seq-item: s[i] sequence: sequence(T) respects-equality: respects-equality(S;T) sq_type: SQType(T) isom-games: g1 ≅ g2
Lemmas referenced :  copath-cons_wf sg-reachable_wf coW-game_wf copath-nil_wf coW-item_wf sg-pos_wf sg-normalize_wf coW-dom_wf coW_wf istype-universe omega-shadow minus-zero mul-distributes-right two-mul one-mul le_reflexive iff_weakening_equal copath_wf subtype_rel_self true_wf equal_wf le-add-cancel2 sg-legal2_wf nat_plus_wf mul-associates int_subtype_base le_wf set_subtype_base istype-sqequal sg-legal1_wf squash_wf istype-nat le-add-cancel-alt zero-mul add-mul-special not-lt-2 decidable__lt le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-minus istype-int minus-add istype-void minus-one-mul-top zero-add minus-one-mul condition-implies-le less-iff-le not-le-2 decidable__le subtract_wf istype-le istype-false seq-item_wf seq-len_wf istype-less_than seq-comp_wf seq-comp-len seq-comp-item nat_properties nat_plus_properties sq_stable__le multiply_nat_wf add_nat_wf mul_bounds_1a copathAgree-cons copathAgree_wf copath-length_wf length-copath-cons subtract_nat_wf nat_plus_subtype_nat sq_stable__and less_than_wf copath-hd_wf sq_stable__less_than sq_stable__equal member-less_than coW-game-reachable sg-change-init_wf hd-copathAgree copath-hd-cons sg-pos-normalize sg-pos-change-init sg-init_wf subtype_rel-equal copath-tl_wf int_seg_wf seq-truncate_wf seq-len-truncate seq-truncate-item int_seg_properties coW-pos-agree_wf copath-tl-cons subtype-respects-equality le_antisymmetry_iff subtype_base_sq length-copath-tl copathAgree-tl multiply-is-int-iff mul_preserves_le sg-legal1-change-init sg-legal1-normalize sg-legal2-change-init sg-legal2-normalize copath-eta2 subtype_rel_transitivity respects-equality-set-trivial
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  cut Error :lambdaEquality_alt,  sqequalHypSubstitution sqequalRule setElimination thin rename productElimination Error :dependent_set_memberEquality_alt,  independent_pairEquality introduction extract_by_obid isectElimination hypothesisEquality applyEquality Error :universeIsType,  hypothesis Error :inhabitedIsType,  instantiate cumulativity Error :functionIsType,  universeEquality baseClosed imageMemberEquality productEquality spreadEquality imageElimination promote_hyp Error :equalityIsType1,  intEquality multiplyEquality minusEquality Error :isect_memberEquality_alt,  addEquality independent_isectElimination independent_functionElimination voidElimination unionElimination dependent_functionElimination closedConclusion independent_pairFormation Error :equalityIstype,  natural_numberEquality Error :productIsType,  equalitySymmetry equalityTransitivity because_Cache Error :dependent_pairFormation_alt,  Error :unionIsType,  Error :inrFormation_alt,  sqequalBase Error :inlFormation_alt,  axiomEquality Error :functionIsTypeImplies,  applyLambdaEquality Error :dependent_pairEquality_alt,  hyp_replacement baseApply setEquality Error :setIsType

Latex:
\mforall{}[A:\mBbbU{}']
    \mforall{}B:A  {}\mrightarrow{}  Type.  \mforall{}w,w':coW(A;a.B[a]).  \mforall{}t:coW-dom(a.B[a];w).  \mforall{}b:coW-dom(a.B[a];w').
        sg-normalize(coW-game(a.B[a];coW-item(w;t);coW-item(w';b)))  \mcong{}
        coW-game(a.B[a];w;w')@<copath-cons(t;()),  copath-cons(b;())>



Date html generated: 2019_06_20-PM-01_11_35
Last ObjectModification: 2019_01_02-PM-01_35_15

Theory : co-recursion-2


Home Index