Nuprl Lemma : coW-game-reachable

[A:𝕌']
  ∀B:A ⟶ Type. ∀w,w':coW(A;a.B[a]). ∀p,q:Pos(coW-game(a.B[a];w;w')).
    (sg-reachable(coW-game(a.B[a];w;w');p;q)  coW-pos-agree(a.B[a];w;w';p;q))


Proof




Definitions occuring in Statement :  coW-pos-agree: coW-pos-agree(a.B[a];w;w';p;q) coW-game: coW-game(a.B[a];w;w') coW: coW(A;a.B[a]) sg-reachable: sg-reachable(g;x;y) sg-pos: Pos(g) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q sg-reachable: sg-reachable(g;x;y) exists: x:A. B[x] and: P ∧ Q member: t ∈ T squash: T prop: so_lambda: λ2x.t[x] so_apply: x[s] true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q less_than: a < b not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top nat_plus: + int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q nat: ge: i ≥  sq_type: SQType(T) subtract: m int_nzero: -o nequal: a ≠ b ∈  sq_stable: SqStable(P) coW-game: coW-game(a.B[a];w;w') sg-pos: Pos(g) pi1: fst(t) coW-pos-agree: coW-pos-agree(a.B[a];w;w';p;q) sg-legal1: Legal1(x;y) pi2: snd(t) cand: c∧ B uiff: uiff(P;Q) sg-legal2: Legal2(x;y)
Lemmas referenced :  coW-pos-agree_wf squash_wf true_wf subtype_rel_self iff_weakening_equal sg-reachable_wf coW-game_wf sg-pos_wf coW_wf istype-universe full-omega-unsat intformand_wf intformless_wf itermConstant_wf itermVar_wf intformle_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf istype-less_than seq-len_wf istype-le sequence_wf nat_plus_wf sg-legal2_wf seq-item_wf subtract_wf nat_plus_properties decidable__le intformnot_wf itermSubtract_wf itermMultiply_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_mul_lemma decidable__lt sg-legal1_wf nat_properties itermAdd_wf int_term_value_add_lemma primrec-wf2 all_wf le_wf less_than_wf nat_wf istype-nat decidable__equal_int intformeq_wf int_formula_prop_eq_lemma seq-truncate_wf seq-len-truncate seq-truncate-item subtype_base_sq int_subtype_base coW-pos-agree_refl coW-pos-agree_transitivity div_rem_sum nequal_wf rem_bounds_1 div_bounds_1 set_subtype_base decidable__or equal-wf-base decidable__and2 intformor_wf int_formula_prop_or_lemma sq_stable__coW-pos-agree copath-length_wf add-is-int-iff false_wf copath_wf copathAgree_wf copathAgree_refl
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  sqequalHypSubstitution productElimination thin cut applyEquality Error :lambdaEquality_alt,  imageElimination introduction extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry Error :universeIsType,  because_Cache sqequalRule natural_numberEquality imageMemberEquality baseClosed instantiate universeEquality independent_isectElimination independent_functionElimination Error :inhabitedIsType,  cumulativity Error :functionIsType,  approximateComputation Error :dependent_pairFormation_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination independent_pairFormation rename setElimination multiplyEquality Error :dependent_set_memberEquality_alt,  unionElimination Error :productIsType,  addEquality Error :setIsType,  functionEquality closedConclusion intEquality promote_hyp Error :equalityIstype,  sqequalBase divideEquality Error :unionIsType,  baseApply remainderEquality productEquality Error :inlFormation_alt,  Error :inrFormation_alt,  pointwiseFunctionality hyp_replacement applyLambdaEquality

Latex:
\mforall{}[A:\mBbbU{}']
    \mforall{}B:A  {}\mrightarrow{}  Type.  \mforall{}w,w':coW(A;a.B[a]).  \mforall{}p,q:Pos(coW-game(a.B[a];w;w')).
        (sg-reachable(coW-game(a.B[a];w;w');p;q)  {}\mRightarrow{}  coW-pos-agree(a.B[a];w;w';p;q))



Date html generated: 2019_06_20-PM-01_11_04
Last ObjectModification: 2019_01_02-PM-03_59_18

Theory : co-recursion-2


Home Index