Nuprl Lemma : coW-game-reachable
∀[A:𝕌']
  ∀B:A ⟶ Type. ∀w,w':coW(A;a.B[a]). ∀p,q:Pos(coW-game(a.B[a];w;w')).
    (sg-reachable(coW-game(a.B[a];w;w');p;q) 
⇒ coW-pos-agree(a.B[a];w;w';p;q))
Proof
Definitions occuring in Statement : 
coW-pos-agree: coW-pos-agree(a.B[a];w;w';p;q)
, 
coW-game: coW-game(a.B[a];w;w')
, 
coW: coW(A;a.B[a])
, 
sg-reachable: sg-reachable(g;x;y)
, 
sg-pos: Pos(g)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
sg-reachable: sg-reachable(g;x;y)
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
squash: ↓T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
nat_plus: ℕ+
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
nat: ℕ
, 
ge: i ≥ j 
, 
sq_type: SQType(T)
, 
subtract: n - m
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
sq_stable: SqStable(P)
, 
coW-game: coW-game(a.B[a];w;w')
, 
sg-pos: Pos(g)
, 
pi1: fst(t)
, 
coW-pos-agree: coW-pos-agree(a.B[a];w;w';p;q)
, 
sg-legal1: Legal1(x;y)
, 
pi2: snd(t)
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
sg-legal2: Legal2(x;y)
Lemmas referenced : 
coW-pos-agree_wf, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
sg-reachable_wf, 
coW-game_wf, 
sg-pos_wf, 
coW_wf, 
istype-universe, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
istype-less_than, 
seq-len_wf, 
istype-le, 
sequence_wf, 
nat_plus_wf, 
sg-legal2_wf, 
seq-item_wf, 
subtract_wf, 
nat_plus_properties, 
decidable__le, 
intformnot_wf, 
itermSubtract_wf, 
itermMultiply_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
int_term_value_mul_lemma, 
decidable__lt, 
sg-legal1_wf, 
nat_properties, 
itermAdd_wf, 
int_term_value_add_lemma, 
primrec-wf2, 
all_wf, 
le_wf, 
less_than_wf, 
nat_wf, 
istype-nat, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
seq-truncate_wf, 
seq-len-truncate, 
seq-truncate-item, 
subtype_base_sq, 
int_subtype_base, 
coW-pos-agree_refl, 
coW-pos-agree_transitivity, 
div_rem_sum, 
nequal_wf, 
rem_bounds_1, 
div_bounds_1, 
set_subtype_base, 
decidable__or, 
equal-wf-base, 
decidable__and2, 
intformor_wf, 
int_formula_prop_or_lemma, 
sq_stable__coW-pos-agree, 
copath-length_wf, 
add-is-int-iff, 
false_wf, 
copath_wf, 
copathAgree_wf, 
copathAgree_refl
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
applyEquality, 
Error :lambdaEquality_alt, 
imageElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
Error :universeIsType, 
because_Cache, 
sqequalRule, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
universeEquality, 
independent_isectElimination, 
independent_functionElimination, 
Error :inhabitedIsType, 
cumulativity, 
Error :functionIsType, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
rename, 
setElimination, 
multiplyEquality, 
Error :dependent_set_memberEquality_alt, 
unionElimination, 
Error :productIsType, 
addEquality, 
Error :setIsType, 
functionEquality, 
closedConclusion, 
intEquality, 
promote_hyp, 
Error :equalityIstype, 
sqequalBase, 
divideEquality, 
Error :unionIsType, 
baseApply, 
remainderEquality, 
productEquality, 
Error :inlFormation_alt, 
Error :inrFormation_alt, 
pointwiseFunctionality, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[A:\mBbbU{}']
    \mforall{}B:A  {}\mrightarrow{}  Type.  \mforall{}w,w':coW(A;a.B[a]).  \mforall{}p,q:Pos(coW-game(a.B[a];w;w')).
        (sg-reachable(coW-game(a.B[a];w;w');p;q)  {}\mRightarrow{}  coW-pos-agree(a.B[a];w;w';p;q))
Date html generated:
2019_06_20-PM-01_11_04
Last ObjectModification:
2019_01_02-PM-03_59_18
Theory : co-recursion-2
Home
Index