Nuprl Lemma : copath-tl_wf

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])]. ∀[p:copath(a.B[a];w)].
  copath-tl(p) ∈ copath(a.B[a];coW-item(w;copath-hd(p))) supposing 0 < copath-length(p)


Proof




Definitions occuring in Statement :  copath-tl: copath-tl(x) copath-hd: copath-hd(p) copath-length: copath-length(p) copath: copath(a.B[a];w) coW-item: coW-item(w;b) coW: coW(A;a.B[a]) less_than: a < b uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a copath: copath(a.B[a];w) copath-length: copath-length(p) pi1: fst(t) coPath: coPath(a.B[a];w;n) prop: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B nat: false: False guard: {T} all: x:A. B[x] implies:  Q copath-tl: copath-tl(x) copath-hd: copath-hd(p) pi2: snd(t) decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q uiff: uiff(P;Q) subtract: m le: A ≤ B less_than': less_than'(a;b) true: True sq_type: SQType(T) ifthenelse: if then else fi  btrue: tt bfalse: ff
Lemmas referenced :  less_than_wf copath-length_wf nat_wf copath_wf coW_wf eq_int_wf less_than_transitivity1 le_weakening less_than_irreflexivity assert_wf bnot_wf not_wf equal-wf-T-base subtract_wf decidable__le false_wf not-le-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel le_wf coPath_wf coW-item_wf bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert_of_eq_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin sqequalRule hypothesis axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isectElimination natural_numberEquality hypothesisEquality lambdaEquality applyEquality setElimination rename isect_memberEquality because_Cache instantiate cumulativity functionEquality universeEquality independent_isectElimination dependent_functionElimination independent_functionElimination voidElimination intEquality baseClosed dependent_pairEquality dependent_set_memberEquality unionElimination independent_pairFormation lambdaFormation addEquality minusEquality impliesFunctionality

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].  \mforall{}[p:copath(a.B[a];w)].
    copath-tl(p)  \mmember{}  copath(a.B[a];coW-item(w;copath-hd(p)))  supposing  0  <  copath-length(p)



Date html generated: 2018_07_25-PM-01_39_49
Last ObjectModification: 2018_06_01-AM-10_10_46

Theory : co-recursion


Home Index