Nuprl Lemma : pcw-pp-tail_wf

[P:Type]. ∀[A:P ⟶ Type]. ∀[B:p:P ⟶ A[p] ⟶ Type]. ∀[C:p:P ⟶ a:A[p] ⟶ B[p;a] ⟶ P]. ∀[pp:PartialPath].
  pcw-pp-tail(pp) ∈ PartialPath supposing ¬↑pcw-pp-null(pp)


Proof




Definitions occuring in Statement :  pcw-pp-tail: pcw-pp-tail(pp) pcw-pp-null: pcw-pp-null(pp) pcw-pp: PartialPath assert: b uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s1;s2;s3] so_apply: x[s1;s2] so_apply: x[s] not: ¬A member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a pcw-pp: PartialPath pcw-pp-null: pcw-pp-null(pp) not: ¬A implies:  Q nat: uiff: uiff(P;Q) and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] pcw-pp-tail: pcw-pp-tail(pp) all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q false: False subtract: m subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) true: True int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b
Lemmas referenced :  assert_of_le_int le_wf not_wf assert_wf pcw-pp-null_wf pcw-pp_wf subtract_wf decidable__le false_wf not-le-2 condition-implies-le minus-add minus-zero add-zero add-commutes zero-add minus-one-mul minus-one-mul-top nat_wf minus-minus add-associates add-swap add_functionality_wrt_le le-add-cancel add-member-int_seg2 le-add-cancel2 lelt_wf int_seg_wf pcw-step_wf all_wf pcw-steprel_wf decidable__lt not-lt-2 less-iff-le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename productElimination sqequalRule hypothesis lambdaFormation independent_functionElimination lemma_by_obid isectElimination hypothesisEquality natural_numberEquality independent_isectElimination promote_hyp axiomEquality equalityTransitivity equalitySymmetry lambdaEquality applyEquality isect_memberEquality because_Cache functionEquality cumulativity universeEquality dependent_set_memberEquality dependent_pairEquality dependent_functionElimination unionElimination independent_pairFormation voidElimination addEquality voidEquality intEquality minusEquality

Latex:
\mforall{}[P:Type].  \mforall{}[A:P  {}\mrightarrow{}  Type].  \mforall{}[B:p:P  {}\mrightarrow{}  A[p]  {}\mrightarrow{}  Type].  \mforall{}[C:p:P  {}\mrightarrow{}  a:A[p]  {}\mrightarrow{}  B[p;a]  {}\mrightarrow{}  P].
\mforall{}[pp:PartialPath].
    pcw-pp-tail(pp)  \mmember{}  PartialPath  supposing  \mneg{}\muparrow{}pcw-pp-null(pp)



Date html generated: 2016_05_14-AM-06_13_07
Last ObjectModification: 2015_12_26-PM-00_05_55

Theory : co-recursion


Home Index