Nuprl Lemma : enum-fin-seq-max_wf

[M:(ℕ ⟶ 𝔹) ⟶ ℕ]. ∀[m:ℕ].  (enum-fin-seq-max(M;m) ∈ ℕ)


Proof




Definitions occuring in Statement :  enum-fin-seq-max: enum-fin-seq-max(M;m) nat: bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T enum-fin-seq-max: enum-fin-seq-max(M;m) nat: subtype_rel: A ⊆B uimplies: supposing a top: Top squash: T guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q all: x:A. B[x] nat_plus: + less_than: a < b less_than': less_than'(a;b) true: True prop: list_n: List(n) so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] cand: c∧ B ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B
Lemmas referenced :  length_wf lelt_wf false_wf select_member list_wf true_wf squash_wf enum-fin-seq-true and_wf int_formula_prop_wf int_formula_prop_not_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformnot_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties btrue_wf l_member_wf l_exists_iff l_exists_map length-map exp_wf2 list_n_wf imax-list-ub le_wf exp-positive-stronger iff_weakening_equal list_n_properties less_than_wf map-length enum-fin-seq_wf bool_wf nat_wf map_wf imax-list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality lemma_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesis intEquality lambdaEquality applyEquality hypothesisEquality because_Cache sqequalRule independent_isectElimination isect_memberEquality voidElimination voidEquality imageElimination imageMemberEquality baseClosed equalityTransitivity equalitySymmetry productElimination independent_functionElimination dependent_functionElimination natural_numberEquality independent_pairFormation axiomEquality setElimination rename setEquality dependent_pairFormation unionElimination int_eqEquality computeAll universeEquality lambdaFormation

Latex:
\mforall{}[M:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[m:\mBbbN{}].    (enum-fin-seq-max(M;m)  \mmember{}  \mBbbN{})



Date html generated: 2016_05_14-PM-09_46_46
Last ObjectModification: 2016_01_15-PM-10_55_44

Theory : continuity


Home Index