Nuprl Lemma : enum-fin-seq_wf

[m:ℕ]. (enum-fin-seq(m) ∈ ℕ ⟶ 𝔹 List(2^m))


Proof




Definitions occuring in Statement :  enum-fin-seq: enum-fin-seq(m) exp: i^n list_n: List(n) nat: bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T list_n: List(n) prop: enum-fin-seq: enum-fin-seq(m) nat: int_seg: {i..j-} false: False implies:  Q not: ¬A ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nat_plus: + squash: T true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  equal_wf length_wf nat_wf bool_wf exp_wf2 primrec_wf list_wf cons_wf btrue_wf nil_wf append_wf map_wf bfalse_wf int_seg_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf exp0_lemma decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma primrec0_lemma length_of_cons_lemma length_of_nil_lemma primrec-unroll eq_int_wf eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int length-append map-length two-mul exp_step squash_wf true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality extract_by_obid sqequalHypSubstitution isectElimination thin intEquality functionEquality hypothesis hypothesisEquality natural_numberEquality sqequalRule axiomEquality equalityTransitivity equalitySymmetry because_Cache lambdaEquality int_eqEquality setElimination rename applyEquality functionExtensionality intWeakElimination lambdaFormation independent_isectElimination dependent_pairFormation dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination unionElimination equalityElimination productElimination promote_hyp instantiate cumulativity imageElimination universeEquality multiplyEquality imageMemberEquality baseClosed

Latex:
\mforall{}[m:\mBbbN{}].  (enum-fin-seq(m)  \mmember{}  \mBbbN{}  {}\mrightarrow{}  \mBbbB{}  List(2\^{}m))



Date html generated: 2017_04_20-AM-07_22_34
Last ObjectModification: 2017_02_27-PM-05_58_24

Theory : continuity


Home Index