Nuprl Lemma : enum-fin-seq-true
∀m:ℕ. ((λx.tt) = enum-fin-seq(m)[0] ∈ (ℕ ⟶ 𝔹))
Proof
Definitions occuring in Statement : 
enum-fin-seq: enum-fin-seq(m), 
select: L[n], 
nat: ℕ, 
btrue: tt, 
bool: 𝔹, 
all: ∀x:A. B[x], 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
enum-fin-seq: enum-fin-seq(m), 
select: L[n], 
cons: [a / b], 
decidable: Dec(P), 
or: P ∨ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
squash: ↓T, 
nequal: a ≠ b ∈ T , 
int_seg: {i..j-}, 
true: True, 
subtype_rel: A ⊆r B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
list_n: A List(n), 
lelt: i ≤ j < k, 
le: A ≤ B, 
less_than': less_than'(a;b), 
nat_plus: ℕ+, 
less_than: a < b
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
primrec0_lemma, 
btrue_wf, 
nat_wf, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
primrec-unroll, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
squash_wf, 
true_wf, 
select_append_front, 
map_wf, 
primrec_wf, 
list_wf, 
le_wf, 
cons_wf, 
nil_wf, 
append_wf, 
bfalse_wf, 
int_seg_wf, 
iff_weakening_equal, 
length-map, 
enum-fin-seq_wf, 
list_n_wf, 
exp_wf2, 
false_wf, 
list_n_properties, 
exp-positive-stronger, 
lelt_wf, 
length_wf, 
select-map, 
subtype_rel_list, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
because_Cache, 
promote_hyp, 
instantiate, 
cumulativity, 
applyEquality, 
imageElimination, 
universeEquality, 
functionEquality, 
functionExtensionality, 
dependent_set_memberEquality, 
imageMemberEquality, 
baseClosed, 
int_eqReduceTrueSq, 
int_eqReduceFalseSq
Latex:
\mforall{}m:\mBbbN{}.  ((\mlambda{}x.tt)  =  enum-fin-seq(m)[0])
Date html generated:
2017_04_20-AM-07_22_41
Last ObjectModification:
2017_02_27-PM-05_59_09
Theory : continuity
Home
Index