Nuprl Lemma : round-robin-list-index

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[L:T List].  (round-robin(L) outl(list-index(eq;L;x))) x ∈ supposing (x ∈ L)


Proof




Definitions occuring in Statement :  round-robin: round-robin(L) list-index: list-index(d;L;x) l_member: (x ∈ l) list: List deq: EqDecider(T) outl: outl(x) uimplies: supposing a uall: [x:A]. B[x] apply: a universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a round-robin: round-robin(L) all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q nat_plus: + or: P ∨ Q false: False cons: [a b] top: Top guard: {T} nat: le: A ≤ B cand: c∧ B decidable: Dec(P) not: ¬A uiff: uiff(P;Q) subtract: m less_than': less_than'(a;b) true: True ge: i ≥  outl: outl(x) int_seg: {i..j-} isl: isl(x) lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] prop: sq_type: SQType(T)
Lemmas referenced :  list-index-property subtype_base_sq int_subtype_base rem_base_case outl_wf isl-list-index length_wf list-cases length_of_nil_lemma nil_member product_subtype_list length_of_cons_lemma istype-void length_wf_nat decidable__lt istype-false not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel istype-less_than non_neg_length assert_elim btrue_wf bfalse_wf btrue_neq_bfalse nat_properties int_seg_properties full-omega-unsat intformand_wf intformless_wf itermVar_wf intformnot_wf istype-int int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf l_member_wf list_wf deq_wf istype-universe
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination sqequalRule instantiate cumulativity intEquality because_Cache dependent_functionElimination productElimination independent_functionElimination Error :dependent_set_memberEquality_alt,  unionElimination voidElimination promote_hyp hypothesis_subsumption Error :isect_memberEquality_alt,  Error :inhabitedIsType,  Error :lambdaFormation_alt,  setElimination rename independent_pairFormation natural_numberEquality addEquality minusEquality Error :equalityIstype,  equalityTransitivity equalitySymmetry Error :productIsType,  applyLambdaEquality approximateComputation Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality Error :universeIsType,  universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].  \mforall{}[L:T  List].
    (round-robin(L)  outl(list-index(eq;L;x)))  =  x  supposing  (x  \mmember{}  L)



Date html generated: 2019_06_20-PM-01_56_52
Last ObjectModification: 2019_03_06-AM-10_52_27

Theory : decidable!equality


Home Index