Nuprl Lemma : list-index-property
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[L:T List].  L[outl(list-index(eq;L;x))] = x ∈ T supposing (x ∈ L)
Proof
Definitions occuring in Statement : 
list-index: list-index(d;L;x)
, 
l_member: (x ∈ l)
, 
select: L[n]
, 
list: T List
, 
deq: EqDecider(T)
, 
outl: outl(x)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
false: False
, 
ge: i ≥ j 
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
or: P ∨ Q
, 
list-index: list-index(d;L;x)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
select: L[n]
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
isl: isl(x)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
cons: [a / b]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
colength: colength(L)
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
squash: ↓T
, 
decidable: Dec(P)
, 
subtype_rel: A ⊆r B
, 
outl: outl(x)
, 
btrue: tt
, 
true: True
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
subtract: n - m
, 
bool: 𝔹
, 
unit: Unit
, 
eqof: eqof(d)
, 
deq: EqDecider(T)
, 
uiff: uiff(P;Q)
, 
bnot: ¬bb
Lemmas referenced : 
isl-list-index, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
list-cases, 
list_ind_nil_lemma, 
stuck-spread, 
istype-base, 
product_subtype_list, 
colength-cons-not-zero, 
colength_wf_list, 
istype-le, 
subtract-1-ge-0, 
subtype_base_sq, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
int_subtype_base, 
spread_cons_lemma, 
decidable__equal_int, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
itermAdd_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
decidable__le, 
le_wf, 
list_ind_cons_lemma, 
list-index_wf, 
istype-nat, 
l_member_wf, 
list_wf, 
deq_wf, 
istype-universe, 
select-cons-tl, 
int_seg_properties, 
decidable__lt, 
add-associates, 
add-swap, 
add-commutes, 
zero-add, 
istype-true, 
select_wf, 
length_wf, 
eqof_wf, 
eqtt_to_assert, 
safe-assert-deq, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
hypothesis, 
lambdaFormation_alt, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
axiomEquality, 
functionIsTypeImplies, 
inhabitedIsType, 
unionElimination, 
baseClosed, 
promote_hyp, 
hypothesis_subsumption, 
equalityIstype, 
because_Cache, 
dependent_set_memberEquality_alt, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
imageElimination, 
baseApply, 
closedConclusion, 
applyEquality, 
intEquality, 
sqequalBase, 
isectIsTypeImplies, 
universeEquality, 
addEquality, 
functionIsType, 
equalityElimination, 
cumulativity
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].  \mforall{}[L:T  List].
    L[outl(list-index(eq;L;x))]  =  x  supposing  (x  \mmember{}  L)
Date html generated:
2019_10_15-AM-10_24_24
Last ObjectModification:
2019_08_05-PM-02_04_47
Theory : decidable!equality
Home
Index