Nuprl Lemma : list-index-property

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[L:T List].  L[outl(list-index(eq;L;x))] x ∈ supposing (x ∈ L)


Proof




Definitions occuring in Statement :  list-index: list-index(d;L;x) l_member: (x ∈ l) select: L[n] list: List deq: EqDecider(T) outl: outl(x) uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q nat: false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: or: P ∨ Q list-index: list-index(d;L;x) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] isl: isl(x) assert: b ifthenelse: if then else fi  bfalse: ff cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T decidable: Dec(P) subtype_rel: A ⊆B outl: outl(x) btrue: tt true: True int_seg: {i..j-} lelt: i ≤ j < k subtract: m bool: 𝔹 unit: Unit eqof: eqof(d) deq: EqDecider(T) uiff: uiff(P;Q) bnot: ¬bb
Lemmas referenced :  isl-list-index nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than list-cases list_ind_nil_lemma stuck-spread istype-base product_subtype_list colength-cons-not-zero colength_wf_list istype-le subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le le_wf list_ind_cons_lemma list-index_wf istype-nat l_member_wf list_wf deq_wf istype-universe select-cons-tl int_seg_properties decidable__lt add-associates add-swap add-commutes zero-add istype-true select_wf length_wf eqof_wf eqtt_to_assert safe-assert-deq eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination productElimination independent_functionElimination hypothesis lambdaFormation_alt setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType axiomEquality functionIsTypeImplies inhabitedIsType unionElimination baseClosed promote_hyp hypothesis_subsumption equalityIstype because_Cache dependent_set_memberEquality_alt instantiate equalityTransitivity equalitySymmetry applyLambdaEquality imageElimination baseApply closedConclusion applyEquality intEquality sqequalBase isectIsTypeImplies universeEquality addEquality functionIsType equalityElimination cumulativity

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].  \mforall{}[L:T  List].
    L[outl(list-index(eq;L;x))]  =  x  supposing  (x  \mmember{}  L)



Date html generated: 2019_10_15-AM-10_24_24
Last ObjectModification: 2019_08_05-PM-02_04_47

Theory : decidable!equality


Home Index