Nuprl Lemma : rec-nat-induction

[P:ℕ ⟶ ℙ]. (∀[n:ℕ]. (P[n]  P[n 1]))  (∀[n:ℕ]. P[n]) supposing Top ⊆P[0]


Proof




Definitions occuring in Statement :  nat: uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] top: Top prop: so_apply: x[s] implies:  Q function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T subtype_rel: A ⊆B implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] nat: all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) sq_stable: SqStable(P) squash: T subtract: m top: Top le: A ≤ B less_than': less_than'(a;b) true: True ge: i ≥  guard: {T}
Lemmas referenced :  equal_wf subtract-add-cancel minus-minus less-iff-le not-ge-2 subtract_wf less_than_wf ge_wf less_than_irreflexivity less_than_transitivity1 nat_properties top_wf subtype_rel_wf le_wf le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-one-mul-top zero-add minus-one-mul minus-add condition-implies-le sq_stable__le not-le-2 false_wf decidable__le nat_wf uall_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction sqequalRule axiomEquality hypothesis thin rename lambdaFormation lemma_by_obid sqequalHypSubstitution isectElimination lambdaEquality functionEquality applyEquality because_Cache hypothesisEquality dependent_set_memberEquality addEquality setElimination natural_numberEquality dependent_functionElimination unionElimination independent_pairFormation voidElimination productElimination independent_functionElimination independent_isectElimination imageMemberEquality baseClosed imageElimination isect_memberEquality voidEquality intEquality minusEquality cumulativity universeEquality intWeakElimination equalityTransitivity equalitySymmetry

Latex:
\mforall{}[P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  (\mforall{}[n:\mBbbN{}].  (P[n]  {}\mRightarrow{}  P[n  +  1]))  {}\mRightarrow{}  (\mforall{}[n:\mBbbN{}].  P[n])  supposing  Top  \msubseteq{}r  P[0]



Date html generated: 2016_05_13-PM-04_02_53
Last ObjectModification: 2016_01_14-PM-07_24_38

Theory : int_1


Home Index