Nuprl Lemma : sum_functionality_wrt_sqequal

[n:ℕ]. ∀[f,g:Base].  Σ(f[x] x < n) ~ Σ(g[x] x < n) supposing ∀i:ℕn. (f[i] g[i])


Proof




Definitions occuring in Statement :  sum: Σ(f[x] x < k) int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] natural_number: $n base: Base sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B guard: {T} so_apply: x[s] sum: Σ(f[x] x < k) sum_aux: sum_aux(k;v;i;x.f[x]) int_seg: {i..j-} decidable: Dec(P) or: P ∨ Q le: A ≤ B bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) less_than: a < b less_than': less_than'(a;b) true: True squash: T lelt: i ≤ j < k bfalse: ff sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf all_wf int_seg_wf sqequal-wf-base less_than_transitivity1 less_than_irreflexivity base_wf set_subtype_base lelt_wf int_subtype_base decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf decidable__lt eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot sum-unroll
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom baseApply closedConclusion baseClosed applyEquality because_Cache equalityTransitivity equalitySymmetry unionElimination productElimination equalityElimination lessCases imageMemberEquality imageElimination dependent_set_memberEquality promote_hyp instantiate cumulativity

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f,g:Base].    \mSigma{}(f[x]  |  x  <  n)  \msim{}  \mSigma{}(g[x]  |  x  <  n)  supposing  \mforall{}i:\mBbbN{}n.  (f[i]  \msim{}  g[i])



Date html generated: 2017_04_14-AM-09_21_24
Last ObjectModification: 2017_02_27-PM-03_57_26

Theory : int_2


Home Index