Nuprl Lemma : sort-int-trivial
∀T:Type. ∀bs:T List.  ((T ⊆r ℤ) 
⇒ sorted(bs) 
⇒ (sort-int(bs) = bs ∈ (T List)))
Proof
Definitions occuring in Statement : 
sort-int: sort-int(as)
, 
sorted: sorted(L)
, 
list: T List
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
sort-int: sort-int(as)
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
merge-int: merge-int(as;bs)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
nil: []
, 
it: ⋅
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
or: P ∨ Q
, 
cons: [a / b]
, 
bool: 𝔹
, 
unit: Unit
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
l_all: (∀x∈L.P[x])
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
select: L[n]
Lemmas referenced : 
list_induction, 
subtype_rel_wf, 
sorted_wf, 
equal_wf, 
list_wf, 
merge-int_wf, 
nil_wf, 
reduce_cons_lemma, 
sorted-cons, 
length_wf_nat, 
nat_wf, 
insert-int_wf, 
cons_wf, 
list-cases, 
insert_int_nil_lemma, 
product_subtype_list, 
insert-int-cons, 
subtype_rel_list, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
less_than_wf, 
length_of_cons_lemma, 
false_wf, 
add_nat_plus, 
nat_plus_wf, 
lelt_wf, 
length_wf, 
less_than_transitivity1, 
less_than_irreflexivity
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
lambdaEquality, 
functionEquality, 
cumulativity, 
intEquality, 
hypothesis, 
independent_isectElimination, 
independent_functionElimination, 
voidEquality, 
voidElimination, 
because_Cache, 
rename, 
dependent_functionElimination, 
isect_memberEquality, 
productElimination, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
setElimination, 
universeEquality, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
applyEquality, 
equalityElimination, 
dependent_pairFormation, 
instantiate, 
natural_numberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
addEquality
Latex:
\mforall{}T:Type.  \mforall{}bs:T  List.    ((T  \msubseteq{}r  \mBbbZ{})  {}\mRightarrow{}  sorted(bs)  {}\mRightarrow{}  (sort-int(bs)  =  bs))
Date html generated:
2017_09_29-PM-05_49_52
Last ObjectModification:
2017_07_26-PM-01_38_55
Theory : list_0
Home
Index