Nuprl Lemma : sort-int-trivial

T:Type. ∀bs:T List.  ((T ⊆r ℤ sorted(bs)  (sort-int(bs) bs ∈ (T List)))


Proof




Definitions occuring in Statement :  sort-int: sort-int(as) sorted: sorted(L) list: List subtype_rel: A ⊆B all: x:A. B[x] implies:  Q int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  sort-int: sort-int(as) all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: uimplies: supposing a so_apply: x[s] merge-int: merge-int(as;bs) reduce: reduce(f;k;as) list_ind: list_ind nil: [] it: subtype_rel: A ⊆B top: Top uiff: uiff(P;Q) and: P ∧ Q or: P ∨ Q cons: [a b] bool: 𝔹 unit: Unit btrue: tt ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) nat_plus: + less_than: a < b squash: T true: True select: L[n]
Lemmas referenced :  list_induction subtype_rel_wf sorted_wf equal_wf list_wf merge-int_wf nil_wf reduce_cons_lemma sorted-cons length_wf_nat nat_wf insert-int_wf cons_wf list-cases insert_int_nil_lemma product_subtype_list insert-int-cons subtype_rel_list lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf length_of_cons_lemma false_wf add_nat_plus nat_plus_wf lelt_wf length_wf less_than_transitivity1 less_than_irreflexivity
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality lambdaEquality functionEquality cumulativity intEquality hypothesis independent_isectElimination independent_functionElimination voidEquality voidElimination because_Cache rename dependent_functionElimination isect_memberEquality productElimination dependent_set_memberEquality equalityTransitivity equalitySymmetry hyp_replacement applyLambdaEquality setElimination universeEquality unionElimination promote_hyp hypothesis_subsumption applyEquality equalityElimination dependent_pairFormation instantiate natural_numberEquality independent_pairFormation imageMemberEquality baseClosed addEquality

Latex:
\mforall{}T:Type.  \mforall{}bs:T  List.    ((T  \msubseteq{}r  \mBbbZ{})  {}\mRightarrow{}  sorted(bs)  {}\mRightarrow{}  (sort-int(bs)  =  bs))



Date html generated: 2017_09_29-PM-05_49_52
Last ObjectModification: 2017_07_26-PM-01_38_55

Theory : list_0


Home Index