Nuprl Lemma : l_all_assert_iff_reduce

[A:Type]. ∀[P:A ⟶ 𝔹]. ∀[L:A List].  uiff((∀x∈L.↑P[x]);↑reduce(λx,b. (P[x] ∧b b);tt;L))


Proof




Definitions occuring in Statement :  l_all: (∀x∈L.P[x]) reduce: reduce(f;k;as) list: List band: p ∧b q assert: b btrue: tt bool: 𝔹 uiff: uiff(P;Q) uall: [x:A]. B[x] so_apply: x[s] lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] prop: implies:  Q all: x:A. B[x] top: Top assert: b ifthenelse: if then else fi  btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a l_all: (∀x∈L.P[x]) int_seg: {i..j-} guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A less_than: a < b squash: T true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  assert_of_band iff_weakening_uiff false_wf int_term_value_add_lemma itermAdd_wf add-is-int-iff length_of_cons_lemma cons_wf l_all_cons and_wf true_wf length_of_nil_lemma nil_wf l_all_nil l_all_wf_nil int_seg_wf int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le length_wf int_seg_properties select_wf assert_witness reduce_cons_lemma reduce_nil_lemma list_wf btrue_wf band_wf bool_wf reduce_wf l_member_wf assert_wf l_all_wf uiff_wf list_induction
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality applyEquality setElimination rename hypothesis setEquality independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality lambdaFormation because_Cache productElimination independent_pairEquality equalityTransitivity equalitySymmetry functionEquality cumulativity independent_isectElimination natural_numberEquality unionElimination dependent_pairFormation int_eqEquality intEquality independent_pairFormation computeAll imageElimination universeEquality axiomEquality addLevel addEquality pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed

Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:A  List].    uiff((\mforall{}x\mmember{}L.\muparrow{}P[x]);\muparrow{}reduce(\mlambda{}x,b.  (P[x]  \mwedge{}\msubb{}  b);tt;L))



Date html generated: 2016_05_14-PM-02_45_25
Last ObjectModification: 2016_01_15-AM-07_36_50

Theory : list_1


Home Index