Nuprl Lemma : length-filter-le

[T:Type]. ∀[P1,P2:T ⟶ 𝔹]. ∀[L:T List].  ||filter(P1;L)|| ≤ ||filter(P2;L)|| supposing (∀x∈L.(↑(P1 x))  (↑(P2 x)))


Proof




Definitions occuring in Statement :  l_all: (∀x∈L.P[x]) length: ||as|| filter: filter(P;l) list: List assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] uimplies: supposing a all: x:A. B[x] prop: implies:  Q so_apply: x[s] subtype_rel: A ⊆B top: Top le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A iff: ⇐⇒ Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b
Lemmas referenced :  list_induction isect_wf l_all_wf l_member_wf assert_wf le_wf length_wf filter_wf5 subtype_rel_dep_function bool_wf subtype_rel_self set_wf list_wf filter_nil_lemma length_of_nil_lemma false_wf less_than'_wf l_all_wf_nil filter_cons_lemma l_all_cons eqtt_to_assert length_of_cons_lemma decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermAdd_wf itermVar_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot cons_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity lambdaFormation hypothesis setElimination rename functionEquality applyEquality functionExtensionality because_Cache setEquality independent_isectElimination independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation natural_numberEquality productElimination independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry unionElimination equalityElimination addEquality dependent_pairFormation int_eqEquality intEquality computeAll promote_hyp instantiate universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[P1,P2:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:T  List].
    ||filter(P1;L)||  \mleq{}  ||filter(P2;L)||  supposing  (\mforall{}x\mmember{}L.(\muparrow{}(P1  x))  {}\mRightarrow{}  (\muparrow{}(P2  x)))



Date html generated: 2017_04_17-AM-07_48_24
Last ObjectModification: 2017_02_27-PM-04_22_52

Theory : list_1


Home Index