Nuprl Lemma : length-filter-le
∀[T:Type]. ∀[P1,P2:T ⟶ 𝔹]. ∀[L:T List]. ||filter(P1;L)|| ≤ ||filter(P2;L)|| supposing (∀x∈L.(↑(P1 x))
⇒ (↑(P2 x)))
Proof
Definitions occuring in Statement :
l_all: (∀x∈L.P[x])
,
length: ||as||
,
filter: filter(P;l)
,
list: T List
,
assert: ↑b
,
bool: 𝔹
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
le: A ≤ B
,
implies: P
⇒ Q
,
apply: f a
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
prop: ℙ
,
implies: P
⇒ Q
,
so_apply: x[s]
,
subtype_rel: A ⊆r B
,
top: Top
,
le: A ≤ B
,
and: P ∧ Q
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
iff: P
⇐⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
ifthenelse: if b then t else f fi
,
decidable: Dec(P)
,
or: P ∨ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
bfalse: ff
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
Lemmas referenced :
list_induction,
isect_wf,
l_all_wf,
l_member_wf,
assert_wf,
le_wf,
length_wf,
filter_wf5,
subtype_rel_dep_function,
bool_wf,
subtype_rel_self,
set_wf,
list_wf,
filter_nil_lemma,
length_of_nil_lemma,
false_wf,
less_than'_wf,
l_all_wf_nil,
filter_cons_lemma,
l_all_cons,
eqtt_to_assert,
length_of_cons_lemma,
decidable__le,
satisfiable-full-omega-tt,
intformand_wf,
intformnot_wf,
intformle_wf,
itermAdd_wf,
itermVar_wf,
itermConstant_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_add_lemma,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_formula_prop_wf,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
cons_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
thin,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
hypothesisEquality,
sqequalRule,
lambdaEquality,
cumulativity,
lambdaFormation,
hypothesis,
setElimination,
rename,
functionEquality,
applyEquality,
functionExtensionality,
because_Cache,
setEquality,
independent_isectElimination,
independent_functionElimination,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
independent_pairFormation,
natural_numberEquality,
productElimination,
independent_pairEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
unionElimination,
equalityElimination,
addEquality,
dependent_pairFormation,
int_eqEquality,
intEquality,
computeAll,
promote_hyp,
instantiate,
universeEquality
Latex:
\mforall{}[T:Type]. \mforall{}[P1,P2:T {}\mrightarrow{} \mBbbB{}]. \mforall{}[L:T List].
||filter(P1;L)|| \mleq{} ||filter(P2;L)|| supposing (\mforall{}x\mmember{}L.(\muparrow{}(P1 x)) {}\mRightarrow{} (\muparrow{}(P2 x)))
Date html generated:
2017_04_17-AM-07_48_24
Last ObjectModification:
2017_02_27-PM-04_22_52
Theory : list_1
Home
Index