Nuprl Lemma : list-injection
∀[T:Type]
  ((∀x,y:T.  Dec(x = y ∈ T))
  
⇒ (∀L:T List. ∀f:{x:T| (x ∈ L)}  ⟶ {x:T| (x ∈ L)} .
        ∀x:{x:T| (x ∈ L)} . ∃m:{1..||L|| + 1-}. ((f^m x) = x ∈ {x:T| (x ∈ L)} ) supposing Inj({x:T| (x ∈ L)} {x:T| (x ∈\000C L)} f)))
Proof
Definitions occuring in Statement : 
l_member: (x ∈ l)
, 
length: ||as||
, 
list: T List
, 
fun_exp: f^n
, 
inject: Inj(A;B;f)
, 
int_seg: {i..j-}
, 
decidable: Dec(P)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
inject: Inj(A;B;f)
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
less_than: a < b
, 
squash: ↓T
, 
surject: Surj(A;B;f)
, 
sq_stable: SqStable(P)
, 
l_member: (x ∈ l)
, 
nat: ℕ
, 
le: A ≤ B
, 
cand: A c∧ B
, 
ge: i ≥ j 
Lemmas referenced : 
equal_wf, 
l_member_wf, 
finite-injection, 
decidable__equal_set, 
length_wf_nat, 
select_wf, 
list-subtype, 
int_seg_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
int_seg_wf, 
length_wf, 
set_wf, 
inject_wf, 
list_wf, 
all_wf, 
decidable_wf, 
sq_stable__l_member, 
lelt_wf, 
select_member, 
nat_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
hypothesis, 
extract_by_obid, 
isectElimination, 
setEquality, 
cumulativity, 
applyEquality, 
functionExtensionality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
because_Cache, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
productElimination, 
unionElimination, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
imageElimination, 
functionEquality, 
universeEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[T:Type]
    ((\mforall{}x,y:T.    Dec(x  =  y))
    {}\mRightarrow{}  (\mforall{}L:T  List.  \mforall{}f:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \{x:T|  (x  \mmember{}  L)\}  .
                \mforall{}x:\{x:T|  (x  \mmember{}  L)\}  .  \mexists{}m:\{1..||L||  +  1\msupminus{}\}.  ((f\^{}m  x)  =  x)  supposing  Inj(\{x:T|  (x  \mmember{}  L)\}  ;\{x:T|  (x\000C  \mmember{}  L)\}  ;f)))
Date html generated:
2017_04_17-AM-07_47_32
Last ObjectModification:
2017_02_27-PM-04_18_28
Theory : list_1
Home
Index