Nuprl Lemma : list-injection
∀[T:Type]
((∀x,y:T. Dec(x = y ∈ T))
⇒ (∀L:T List. ∀f:{x:T| (x ∈ L)} ⟶ {x:T| (x ∈ L)} .
∀x:{x:T| (x ∈ L)} . ∃m:{1..||L|| + 1-}. ((f^m x) = x ∈ {x:T| (x ∈ L)} ) supposing Inj({x:T| (x ∈ L)} ;{x:T| (x ∈\000C L)} ;f)))
Proof
Definitions occuring in Statement :
l_member: (x ∈ l)
,
length: ||as||
,
list: T List
,
fun_exp: f^n
,
inject: Inj(A;B;f)
,
int_seg: {i..j-}
,
decidable: Dec(P)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
implies: P
⇒ Q
,
set: {x:A| B[x]}
,
apply: f a
,
function: x:A ⟶ B[x]
,
add: n + m
,
natural_number: $n
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
all: ∀x:A. B[x]
,
uimplies: b supposing a
,
member: t ∈ T
,
inject: Inj(A;B;f)
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
guard: {T}
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
and: P ∧ Q
,
decidable: Dec(P)
,
or: P ∨ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
not: ¬A
,
top: Top
,
less_than: a < b
,
squash: ↓T
,
surject: Surj(A;B;f)
,
sq_stable: SqStable(P)
,
l_member: (x ∈ l)
,
nat: ℕ
,
le: A ≤ B
,
cand: A c∧ B
,
ge: i ≥ j
Lemmas referenced :
equal_wf,
l_member_wf,
finite-injection,
decidable__equal_set,
length_wf_nat,
select_wf,
list-subtype,
int_seg_properties,
decidable__le,
satisfiable-full-omega-tt,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_wf,
decidable__lt,
intformless_wf,
int_formula_prop_less_lemma,
int_seg_wf,
length_wf,
set_wf,
inject_wf,
list_wf,
all_wf,
decidable_wf,
sq_stable__l_member,
lelt_wf,
select_member,
nat_properties
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
lambdaFormation,
cut,
introduction,
sqequalRule,
sqequalHypSubstitution,
lambdaEquality,
dependent_functionElimination,
thin,
hypothesisEquality,
axiomEquality,
hypothesis,
extract_by_obid,
isectElimination,
setEquality,
cumulativity,
applyEquality,
functionExtensionality,
setElimination,
rename,
dependent_set_memberEquality,
because_Cache,
independent_functionElimination,
equalityTransitivity,
equalitySymmetry,
independent_isectElimination,
productElimination,
unionElimination,
natural_numberEquality,
dependent_pairFormation,
int_eqEquality,
intEquality,
isect_memberEquality,
voidElimination,
voidEquality,
independent_pairFormation,
computeAll,
imageElimination,
functionEquality,
universeEquality,
imageMemberEquality,
baseClosed
Latex:
\mforall{}[T:Type]
((\mforall{}x,y:T. Dec(x = y))
{}\mRightarrow{} (\mforall{}L:T List. \mforall{}f:\{x:T| (x \mmember{} L)\} {}\mrightarrow{} \{x:T| (x \mmember{} L)\} .
\mforall{}x:\{x:T| (x \mmember{} L)\} . \mexists{}m:\{1..||L|| + 1\msupminus{}\}. ((f\^{}m x) = x) supposing Inj(\{x:T| (x \mmember{} L)\} ;\{x:T| (x\000C \mmember{} L)\} ;f)))
Date html generated:
2017_04_17-AM-07_47_32
Last ObjectModification:
2017_02_27-PM-04_18_28
Theory : list_1
Home
Index