Nuprl Lemma : member-concat-mklist

[T:Type]. ∀n:ℕ. ∀f:ℕn ⟶ (T List). ∀x:T.  ((x ∈ concat(mklist(n;f))) ⇐⇒ ∃i:ℕn. (x ∈ i))


Proof




Definitions occuring in Statement :  mklist: mklist(n;f) l_member: (x ∈ l) concat: concat(ll) list: List int_seg: {i..j-} nat: uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q exists: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q nat: l_member: (x ∈ l) cand: c∧ B top: Top squash: T int_seg: {i..j-} lelt: i ≤ j < k true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced :  exists_wf list_wf l_member_wf mklist_wf int_seg_wf member-concat concat_wf iff_wf nat_wf mklist_length equal_wf squash_wf true_wf mklist_select lelt_wf subtype_rel_self iff_weakening_equal int_seg_subtype_nat false_wf int_seg_properties nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_wf less_than_wf length_wf select_wf decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut independent_pairFormation sqequalHypSubstitution productElimination thin introduction extract_by_obid isectElimination hypothesisEquality hypothesis sqequalRule lambdaEquality productEquality natural_numberEquality setElimination rename because_Cache applyEquality addLevel impliesFunctionality dependent_functionElimination independent_functionElimination functionEquality universeEquality isect_memberEquality voidElimination voidEquality imageElimination equalityTransitivity equalitySymmetry equalityUniverse levelHypothesis dependent_set_memberEquality imageMemberEquality baseClosed instantiate independent_isectElimination dependent_pairFormation unionElimination approximateComputation int_eqEquality intEquality cumulativity functionExtensionality

Latex:
\mforall{}[T:Type].  \mforall{}n:\mBbbN{}.  \mforall{}f:\mBbbN{}n  {}\mrightarrow{}  (T  List).  \mforall{}x:T.    ((x  \mmember{}  concat(mklist(n;f)))  \mLeftarrow{}{}\mRightarrow{}  \mexists{}i:\mBbbN{}n.  (x  \mmember{}  f  i))



Date html generated: 2018_05_21-PM-00_44_24
Last ObjectModification: 2018_05_19-AM-06_48_28

Theory : list_1


Home Index