Nuprl Lemma : member-concat-mklist
∀[T:Type]. ∀n:ℕ. ∀f:ℕn ⟶ (T List). ∀x:T.  ((x ∈ concat(mklist(n;f))) 
⇐⇒ ∃i:ℕn. (x ∈ f i))
Proof
Definitions occuring in Statement : 
mklist: mklist(n;f)
, 
l_member: (x ∈ l)
, 
concat: concat(ll)
, 
list: T List
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
nat: ℕ
, 
l_member: (x ∈ l)
, 
cand: A c∧ B
, 
top: Top
, 
squash: ↓T
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced : 
exists_wf, 
list_wf, 
l_member_wf, 
mklist_wf, 
int_seg_wf, 
member-concat, 
concat_wf, 
iff_wf, 
nat_wf, 
mklist_length, 
equal_wf, 
squash_wf, 
true_wf, 
mklist_select, 
lelt_wf, 
subtype_rel_self, 
iff_weakening_equal, 
int_seg_subtype_nat, 
false_wf, 
int_seg_properties, 
nat_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
less_than_wf, 
length_wf, 
select_wf, 
decidable__le, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
productEquality, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
applyEquality, 
addLevel, 
impliesFunctionality, 
dependent_functionElimination, 
independent_functionElimination, 
functionEquality, 
universeEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
equalityUniverse, 
levelHypothesis, 
dependent_set_memberEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
independent_isectElimination, 
dependent_pairFormation, 
unionElimination, 
approximateComputation, 
int_eqEquality, 
intEquality, 
cumulativity, 
functionExtensionality
Latex:
\mforall{}[T:Type].  \mforall{}n:\mBbbN{}.  \mforall{}f:\mBbbN{}n  {}\mrightarrow{}  (T  List).  \mforall{}x:T.    ((x  \mmember{}  concat(mklist(n;f)))  \mLeftarrow{}{}\mRightarrow{}  \mexists{}i:\mBbbN{}n.  (x  \mmember{}  f  i))
Date html generated:
2018_05_21-PM-00_44_24
Last ObjectModification:
2018_05_19-AM-06_48_28
Theory : list_1
Home
Index