Nuprl Lemma : no_repeats-remove-first

[T:Type]. ∀[L:T List]. ∀[P:{x:T| (x ∈ L)}  ⟶ 𝔹].  no_repeats(T;remove-first(P;L)) supposing no_repeats(T;L)


Proof




Definitions occuring in Statement :  remove-first: remove-first(P;L) no_repeats: no_repeats(T;l) l_member: (x ∈ l) list: List bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  no_repeats: no_repeats(T;l) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a not: ¬A implies:  Q false: False nat: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B prop: all: x:A. B[x] so_lambda: λ2x.t[x] guard: {T} ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top so_apply: x[s] gt: i > j subtype_rel: A ⊆B l_all: (∀x∈L.P[x]) less_than: a < b
Lemmas referenced :  select-remove-first lelt_wf length_wf remove-first_wf l_member_wf length-remove-first-le decidable__all_int_seg not_wf assert_wf select_wf list-subtype int_seg_properties nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma int_seg_wf decidable__not decidable__assert equal_wf nat_wf less_than_wf no_repeats_wf bool_wf list_wf no_repeats_witness decidable__equal_int intformeq_wf int_formula_prop_eq_lemma le_wf decidable__or equal-wf-base int_subtype_base or_wf intformor_wf int_formula_prop_or_lemma length-remove-first itermSubtract_wf int_term_value_subtract_lemma
Rules used in proof :  sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin independent_functionElimination extract_by_obid isectElimination hypothesisEquality hypothesis setElimination rename dependent_set_memberEquality independent_pairFormation productElimination cumulativity because_Cache functionExtensionality applyEquality setEquality instantiate dependent_functionElimination natural_numberEquality addEquality sqequalRule lambdaEquality equalityTransitivity equalitySymmetry independent_isectElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll functionEquality universeEquality applyLambdaEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}].
    no\_repeats(T;remove-first(P;L))  supposing  no\_repeats(T;L)



Date html generated: 2017_04_17-AM-08_34_28
Last ObjectModification: 2017_02_27-PM-04_56_02

Theory : list_1


Home Index