Nuprl Lemma : nth_tl_is_fseg

[T:Type]. ∀L1,L2:T List.  (fseg(T;L1;L2) ⇐⇒ ∃n:ℕ||L2|| 1. (L1 nth_tl(n;L2) ∈ (T List)))


Proof




Definitions occuring in Statement :  fseg: fseg(T;L1;L2) length: ||as|| nth_tl: nth_tl(n;as) list: List int_seg: {i..j-} uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q add: m natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  fseg: fseg(T;L1;L2) uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q exists: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q int_seg: {i..j-} lelt: i ≤ j < k ge: i ≥  decidable: Dec(P) or: P ∨ Q le: A ≤ B uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top subtype_rel: A ⊆B less_than': less_than'(a;b) squash: T true: True guard: {T} less_than: a < b uiff: uiff(P;Q) int_iseg: {i...j}
Lemmas referenced :  exists_wf list_wf equal_wf append_wf int_seg_wf length_wf nth_tl_wf non_neg_length decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma lelt_wf nth_tl_append int_seg_subtype false_wf le_wf squash_wf true_wf add_functionality_wrt_eq length_append subtype_rel_list top_wf iff_weakening_equal int_seg_properties add-is-int-iff firstn_wf append_firstn_lastn subtype_rel_sets
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation independent_pairFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid isectElimination cumulativity hypothesisEquality hypothesis lambdaEquality natural_numberEquality addEquality setElimination rename universeEquality dependent_pairFormation dependent_set_memberEquality dependent_functionElimination because_Cache unionElimination independent_isectElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll addLevel applyEquality imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed independent_functionElimination applyLambdaEquality pointwiseFunctionality promote_hyp baseApply closedConclusion hyp_replacement equalityUniverse levelHypothesis productEquality setEquality

Latex:
\mforall{}[T:Type].  \mforall{}L1,L2:T  List.    (fseg(T;L1;L2)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}||L2||  +  1.  (L1  =  nth\_tl(n;L2)))



Date html generated: 2017_04_17-AM-07_33_05
Last ObjectModification: 2017_02_27-PM-04_09_23

Theory : list_1


Home Index