Nuprl Lemma : nth_tl_is_fseg
∀[T:Type]. ∀L1,L2:T List. (fseg(T;L1;L2)
⇐⇒ ∃n:ℕ||L2|| + 1. (L1 = nth_tl(n;L2) ∈ (T List)))
Proof
Definitions occuring in Statement :
fseg: fseg(T;L1;L2)
,
length: ||as||
,
nth_tl: nth_tl(n;as)
,
list: T List
,
int_seg: {i..j-}
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
iff: P
⇐⇒ Q
,
add: n + m
,
natural_number: $n
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
fseg: fseg(T;L1;L2)
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
exists: ∃x:A. B[x]
,
member: t ∈ T
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
rev_implies: P
⇐ Q
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
ge: i ≥ j
,
decidable: Dec(P)
,
or: P ∨ Q
,
le: A ≤ B
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
false: False
,
not: ¬A
,
top: Top
,
subtype_rel: A ⊆r B
,
less_than': less_than'(a;b)
,
squash: ↓T
,
true: True
,
guard: {T}
,
less_than: a < b
,
uiff: uiff(P;Q)
,
int_iseg: {i...j}
Lemmas referenced :
exists_wf,
list_wf,
equal_wf,
append_wf,
int_seg_wf,
length_wf,
nth_tl_wf,
non_neg_length,
decidable__le,
satisfiable-full-omega-tt,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_wf,
decidable__lt,
intformless_wf,
itermAdd_wf,
int_formula_prop_less_lemma,
int_term_value_add_lemma,
lelt_wf,
nth_tl_append,
int_seg_subtype,
false_wf,
le_wf,
squash_wf,
true_wf,
add_functionality_wrt_eq,
length_append,
subtype_rel_list,
top_wf,
iff_weakening_equal,
int_seg_properties,
add-is-int-iff,
firstn_wf,
append_firstn_lastn,
subtype_rel_sets
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
lambdaFormation,
independent_pairFormation,
sqequalHypSubstitution,
productElimination,
thin,
cut,
introduction,
extract_by_obid,
isectElimination,
cumulativity,
hypothesisEquality,
hypothesis,
lambdaEquality,
natural_numberEquality,
addEquality,
setElimination,
rename,
universeEquality,
dependent_pairFormation,
dependent_set_memberEquality,
dependent_functionElimination,
because_Cache,
unionElimination,
independent_isectElimination,
int_eqEquality,
intEquality,
isect_memberEquality,
voidElimination,
voidEquality,
computeAll,
addLevel,
applyEquality,
imageElimination,
equalityTransitivity,
equalitySymmetry,
imageMemberEquality,
baseClosed,
independent_functionElimination,
applyLambdaEquality,
pointwiseFunctionality,
promote_hyp,
baseApply,
closedConclusion,
hyp_replacement,
equalityUniverse,
levelHypothesis,
productEquality,
setEquality
Latex:
\mforall{}[T:Type]. \mforall{}L1,L2:T List. (fseg(T;L1;L2) \mLeftarrow{}{}\mRightarrow{} \mexists{}n:\mBbbN{}||L2|| + 1. (L1 = nth\_tl(n;L2)))
Date html generated:
2017_04_17-AM-07_33_05
Last ObjectModification:
2017_02_27-PM-04_09_23
Theory : list_1
Home
Index