Nuprl Lemma : nth_tl_is_fseg
∀[T:Type]. ∀L1,L2:T List.  (fseg(T;L1;L2) ⇐⇒ ∃n:ℕ||L2|| + 1. (L1 = nth_tl(n;L2) ∈ (T List)))
Proof
Definitions occuring in Statement : 
fseg: fseg(T;L1;L2), 
length: ||as||, 
nth_tl: nth_tl(n;as), 
list: T List, 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
add: n + m, 
natural_number: $n, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
fseg: fseg(T;L1;L2), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
exists: ∃x:A. B[x], 
member: t ∈ T, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
rev_implies: P ⇐ Q, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
le: A ≤ B, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
not: ¬A, 
top: Top, 
subtype_rel: A ⊆r B, 
less_than': less_than'(a;b), 
squash: ↓T, 
true: True, 
guard: {T}, 
less_than: a < b, 
uiff: uiff(P;Q), 
int_iseg: {i...j}
Lemmas referenced : 
exists_wf, 
list_wf, 
equal_wf, 
append_wf, 
int_seg_wf, 
length_wf, 
nth_tl_wf, 
non_neg_length, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
itermAdd_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
lelt_wf, 
nth_tl_append, 
int_seg_subtype, 
false_wf, 
le_wf, 
squash_wf, 
true_wf, 
add_functionality_wrt_eq, 
length_append, 
subtype_rel_list, 
top_wf, 
iff_weakening_equal, 
int_seg_properties, 
add-is-int-iff, 
firstn_wf, 
append_firstn_lastn, 
subtype_rel_sets
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
natural_numberEquality, 
addEquality, 
setElimination, 
rename, 
universeEquality, 
dependent_pairFormation, 
dependent_set_memberEquality, 
dependent_functionElimination, 
because_Cache, 
unionElimination, 
independent_isectElimination, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
addLevel, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
applyLambdaEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
hyp_replacement, 
equalityUniverse, 
levelHypothesis, 
productEquality, 
setEquality
Latex:
\mforall{}[T:Type].  \mforall{}L1,L2:T  List.    (fseg(T;L1;L2)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}||L2||  +  1.  (L1  =  nth\_tl(n;L2)))
Date html generated:
2017_04_17-AM-07_33_05
Last ObjectModification:
2017_02_27-PM-04_09_23
Theory : list_1
Home
Index