Nuprl Lemma : remove-combine-implies-member2

[T:Type]. ∀cmp:T ⟶ ℤ. ∀x:T. ∀l:T List.  ((¬((cmp x) 0 ∈ ℤ))  (x ∈ l)  (x ∈ remove-combine(cmp;l)))


Proof




Definitions occuring in Statement :  remove-combine: remove-combine(cmp;l) l_member: (x ∈ l) list: List uall: [x:A]. B[x] all: x:A. B[x] not: ¬A implies:  Q apply: a function: x:A ⟶ B[x] natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s] false: False iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q top: Top bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) uimplies: supposing a ifthenelse: if then else fi  or: P ∨ Q not: ¬A bfalse: ff exists: x:A. B[x] sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b
Lemmas referenced :  list_induction not_wf equal-wf-T-base l_member_wf remove-combine_wf list_wf false_wf nil_member remove-combine-nil nil_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int and_wf equal_wf or_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int lt_int_wf assert_of_lt_int cons_member less_than_wf remove-combine-cons cons_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination because_Cache sqequalRule lambdaEquality functionEquality intEquality applyEquality functionExtensionality hypothesisEquality cumulativity baseClosed hypothesis dependent_functionElimination independent_functionElimination voidElimination addLevel impliesFunctionality productElimination isect_memberEquality voidEquality rename natural_numberEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry independent_isectElimination dependent_set_memberEquality independent_pairFormation applyLambdaEquality setElimination dependent_pairFormation promote_hyp instantiate inlFormation inrFormation universeEquality

Latex:
\mforall{}[T:Type]
    \mforall{}cmp:T  {}\mrightarrow{}  \mBbbZ{}.  \mforall{}x:T.  \mforall{}l:T  List.    ((\mneg{}((cmp  x)  =  0))  {}\mRightarrow{}  (x  \mmember{}  l)  {}\mRightarrow{}  (x  \mmember{}  remove-combine(cmp;l)))



Date html generated: 2017_04_17-AM-08_30_28
Last ObjectModification: 2017_02_27-PM-04_51_54

Theory : list_1


Home Index