Nuprl Lemma : remove-combine-implies-member2
∀[T:Type]. ∀cmp:T ⟶ ℤ. ∀x:T. ∀l:T List.  ((¬((cmp x) = 0 ∈ ℤ)) ⇒ (x ∈ l) ⇒ (x ∈ remove-combine(cmp;l)))
Proof
Definitions occuring in Statement : 
remove-combine: remove-combine(cmp;l), 
l_member: (x ∈ l), 
list: T List, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
prop: ℙ, 
so_apply: x[s], 
false: False, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
top: Top, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
or: P ∨ Q, 
not: ¬A, 
bfalse: ff, 
exists: ∃x:A. B[x], 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b
Lemmas referenced : 
list_induction, 
not_wf, 
equal-wf-T-base, 
l_member_wf, 
remove-combine_wf, 
list_wf, 
false_wf, 
nil_member, 
remove-combine-nil, 
nil_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
and_wf, 
equal_wf, 
or_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
lt_int_wf, 
assert_of_lt_int, 
cons_member, 
less_than_wf, 
remove-combine-cons, 
cons_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
intEquality, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
cumulativity, 
baseClosed, 
hypothesis, 
dependent_functionElimination, 
independent_functionElimination, 
voidElimination, 
addLevel, 
impliesFunctionality, 
productElimination, 
isect_memberEquality, 
voidEquality, 
rename, 
natural_numberEquality, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
dependent_set_memberEquality, 
independent_pairFormation, 
applyLambdaEquality, 
setElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
inlFormation, 
inrFormation, 
universeEquality
Latex:
\mforall{}[T:Type]
    \mforall{}cmp:T  {}\mrightarrow{}  \mBbbZ{}.  \mforall{}x:T.  \mforall{}l:T  List.    ((\mneg{}((cmp  x)  =  0))  {}\mRightarrow{}  (x  \mmember{}  l)  {}\mRightarrow{}  (x  \mmember{}  remove-combine(cmp;l)))
Date html generated:
2017_04_17-AM-08_30_28
Last ObjectModification:
2017_02_27-PM-04_51_54
Theory : list_1
Home
Index