Nuprl Lemma : select_zip
∀[T1,T2:Type]. ∀[as:T1 List]. ∀[bs:T2 List]. ∀[i:ℕ].
zip(as;bs)[i] = <as[i], bs[i]> ∈ (T1 × T2) supposing i < ||zip(as;bs)||
Proof
Definitions occuring in Statement :
zip: zip(as;bs)
,
select: L[n]
,
length: ||as||
,
list: T List
,
nat: ℕ
,
less_than: a < b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
pair: <a, b>
,
product: x:A × B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
not: ¬A
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
guard: {T}
,
or: P ∨ Q
,
zip: zip(as;bs)
,
list_ind: list_ind,
nil: []
,
it: ⋅
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
so_apply: x[s1;s2;s3]
,
select: L[n]
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
cons: [a / b]
,
colength: colength(L)
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
sq_type: SQType(T)
,
decidable: Dec(P)
,
less_than: a < b
,
squash: ↓T
,
less_than': less_than'(a;b)
,
le: A ≤ B
,
true: True
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
Lemmas referenced :
nat_properties,
satisfiable-full-omega-tt,
intformand_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
intformless_wf,
int_formula_prop_and_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
ge_wf,
less_than_wf,
length_wf,
zip_wf,
list_wf,
equal-wf-T-base,
nat_wf,
colength_wf_list,
less_than_transitivity1,
less_than_irreflexivity,
list-cases,
nil_wf,
list_ind_nil_lemma,
stuck-spread,
base_wf,
length_of_nil_lemma,
product_subtype_list,
spread_cons_lemma,
equal_wf,
subtype_base_sq,
set_subtype_base,
le_wf,
int_subtype_base,
intformeq_wf,
itermAdd_wf,
int_formula_prop_eq_lemma,
int_term_value_add_lemma,
decidable__le,
intformnot_wf,
int_formula_prop_not_lemma,
subtract_wf,
itermSubtract_wf,
int_term_value_subtract_lemma,
decidable__equal_int,
cons_wf,
list_ind_cons_lemma,
length_of_cons_lemma,
decidable__lt,
zip_length,
squash_wf,
true_wf,
select_cons_tl,
iff_weakening_equal
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
thin,
lambdaFormation,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
hypothesisEquality,
hypothesis,
setElimination,
rename,
intWeakElimination,
natural_numberEquality,
independent_isectElimination,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
intEquality,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
sqequalRule,
independent_pairFormation,
computeAll,
independent_functionElimination,
axiomEquality,
productEquality,
cumulativity,
equalityTransitivity,
equalitySymmetry,
because_Cache,
applyEquality,
unionElimination,
baseClosed,
promote_hyp,
hypothesis_subsumption,
productElimination,
instantiate,
applyLambdaEquality,
dependent_set_memberEquality,
addEquality,
imageElimination,
universeEquality,
independent_pairEquality,
imageMemberEquality
Latex:
\mforall{}[T1,T2:Type]. \mforall{}[as:T1 List]. \mforall{}[bs:T2 List]. \mforall{}[i:\mBbbN{}].
zip(as;bs)[i] = <as[i], bs[i]> supposing i < ||zip(as;bs)||
Date html generated:
2017_04_17-AM-08_54_53
Last ObjectModification:
2017_02_27-PM-05_12_02
Theory : list_1
Home
Index