Nuprl Lemma : square-iff-isqrt
∀x:ℕ. (∃y:ℕ. ((y * y) = x ∈ ℤ) 
⇐⇒ (isqrt(x) * isqrt(x)) = x ∈ ℤ)
Proof
Definitions occuring in Statement : 
isqrt: isqrt(x)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
multiply: n * m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
guard: {T}
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
isqrt: isqrt(x)
, 
integer-sqrt-ext, 
genrec-ap: genrec-ap, 
ge: i ≥ j 
, 
less_than: a < b
, 
squash: ↓T
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
nat_plus: ℕ+
, 
le: A ≤ B
, 
uiff: uiff(P;Q)
, 
less_than': less_than'(a;b)
, 
true: True
, 
subtract: n - m
Lemmas referenced : 
integer-sqrt-ext, 
int_entire, 
int_formula_prop_or_lemma, 
intformor_wf, 
less_than_wf, 
minus-zero, 
minus-add, 
add-commutes, 
condition-implies-le, 
le-add-cancel, 
zero-add, 
add-zero, 
add-associates, 
add_functionality_wrt_le, 
not-equal-2, 
not-lt-2, 
false_wf, 
multiply-is-int-iff, 
mul_preserves_lt, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
intformeq_wf, 
itermMultiply_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
le_wf, 
decidable__le, 
nat_properties, 
mul_preserves_le, 
decidable__lt, 
decidable__equal_int, 
isqrt-property, 
isqrt_wf, 
equal_wf, 
nat_wf, 
exists_wf, 
int_subtype_base, 
subtype_base_sq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
instantiate, 
lemma_by_obid, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
hypothesis, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
sqequalRule, 
lambdaEquality, 
multiplyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
dependent_pairFormation, 
applyEquality, 
because_Cache, 
natural_numberEquality, 
unionElimination, 
addEquality, 
dependent_set_memberEquality, 
imageElimination, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
introduction, 
baseApply, 
closedConclusion, 
baseClosed, 
minusEquality, 
pointwiseFunctionality, 
promote_hyp
Latex:
\mforall{}x:\mBbbN{}.  (\mexists{}y:\mBbbN{}.  ((y  *  y)  =  x)  \mLeftarrow{}{}\mRightarrow{}  (isqrt(x)  *  isqrt(x))  =  x)
Date html generated:
2019_06_20-PM-02_37_05
Last ObjectModification:
2019_06_12-PM-00_25_57
Theory : num_thy_1
Home
Index