Nuprl Lemma : twosquare-type-finite

p:{p:{2...}| prime(p)} finite(x:ℕ × y:ℕ × {z:ℕ((x x) (4 z)) p ∈ ℤ)


Proof




Definitions occuring in Statement :  prime: prime(a) finite: finite(T) int_upper: {i...} nat: all: x:A. B[x] set: {x:A| B[x]}  product: x:A × B[x] multiply: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  prop: int_upper: {i...} member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x] implies:  Q uimplies: supposing a so_apply: x[s] int_seg: {i..j-} subtype_rel: A ⊆B spreadn: spread3 so_lambda: λ2x.t[x] not: ¬A false: False less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) lelt: i ≤ j < k nat: ext-eq: A ≡ B ge: i ≥  guard: {T} top: Top sq_type: SQType(T) iff: ⇐⇒ Q
Lemmas referenced :  prime_wf istype-int_upper le_wf int_upper_wf int_subtype_base istype-int lelt_wf set_subtype_base equal-wf-base int_seg_wf finite-decidable-subset false_wf upper_subtype_nat nat_wf subtype_rel_set nsub_finite finite-product decidable__equal_int equal_wf decidable__squash istype-nat istype-false int_seg_subtype_nat istype-le int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le int_upper_properties int_seg_properties int_term_value_mul_lemma itermMultiply_wf mul_preserves_le nat_properties int_term_value_add_lemma int_formula_prop_eq_lemma itermAdd_wf intformeq_wf istype-less_than decidable__lt intformless_wf istype-void int_formula_prop_less_lemma subtype_base_sq not-prime-square finite_functionality_wrt_ext-eq
Rules used in proof :  hypothesisEquality rename setElimination universeIsType hypothesis natural_numberEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut setIsType lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_functionElimination productIsType independent_isectElimination applyEquality baseClosed closedConclusion baseApply intEquality productElimination lambdaEquality_alt sqequalRule because_Cache productEquality dependent_functionElimination lambdaFormation independent_pairFormation lambdaEquality multiplyEquality addEquality sqequalBase inhabitedIsType equalityIstype voidElimination Error :memTop,  int_eqEquality dependent_pairFormation_alt approximateComputation unionElimination equalitySymmetry equalityTransitivity dependent_set_memberEquality_alt dependent_pairEquality_alt independent_pairEquality isect_memberEquality_alt cumulativity instantiate setEquality

Latex:
\mforall{}p:\{p:\{2...\}|  prime(p)\}  .  finite(x:\mBbbN{}  \mtimes{}  y:\mBbbN{}  \mtimes{}  \{z:\mBbbN{}|  ((x  *  x)  +  (4  *  y  *  z))  =  p\}  )



Date html generated: 2020_05_19-PM-10_04_09
Last ObjectModification: 2019_12_26-AM-11_44_54

Theory : num_thy_1


Home Index