Nuprl Lemma : twosquare-type-finite
∀p:{p:{2...}| prime(p)} . finite(x:ℕ × y:ℕ × {z:ℕ| ((x * x) + (4 * y * z)) = p ∈ ℤ} )
Proof
Definitions occuring in Statement : 
prime: prime(a)
, 
finite: finite(T)
, 
int_upper: {i...}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
set: {x:A| B[x]} 
, 
product: x:A × B[x]
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
prop: ℙ
, 
int_upper: {i...}
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
subtype_rel: A ⊆r B
, 
spreadn: spread3, 
so_lambda: λ2x.t[x]
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
lelt: i ≤ j < k
, 
nat: ℕ
, 
ext-eq: A ≡ B
, 
ge: i ≥ j 
, 
guard: {T}
, 
top: Top
, 
sq_type: SQType(T)
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
prime_wf, 
istype-int_upper, 
le_wf, 
int_upper_wf, 
int_subtype_base, 
istype-int, 
lelt_wf, 
set_subtype_base, 
equal-wf-base, 
int_seg_wf, 
finite-decidable-subset, 
false_wf, 
upper_subtype_nat, 
nat_wf, 
subtype_rel_set, 
nsub_finite, 
finite-product, 
decidable__equal_int, 
equal_wf, 
decidable__squash, 
istype-nat, 
istype-false, 
int_seg_subtype_nat, 
istype-le, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
int_upper_properties, 
int_seg_properties, 
int_term_value_mul_lemma, 
itermMultiply_wf, 
mul_preserves_le, 
nat_properties, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
itermAdd_wf, 
intformeq_wf, 
istype-less_than, 
decidable__lt, 
intformless_wf, 
istype-void, 
int_formula_prop_less_lemma, 
subtype_base_sq, 
not-prime-square, 
finite_functionality_wrt_ext-eq
Rules used in proof : 
hypothesisEquality, 
rename, 
setElimination, 
universeIsType, 
hypothesis, 
natural_numberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
setIsType, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_functionElimination, 
productIsType, 
independent_isectElimination, 
applyEquality, 
baseClosed, 
closedConclusion, 
baseApply, 
intEquality, 
productElimination, 
lambdaEquality_alt, 
sqequalRule, 
because_Cache, 
productEquality, 
dependent_functionElimination, 
lambdaFormation, 
independent_pairFormation, 
lambdaEquality, 
multiplyEquality, 
addEquality, 
sqequalBase, 
inhabitedIsType, 
equalityIstype, 
voidElimination, 
Error :memTop, 
int_eqEquality, 
dependent_pairFormation_alt, 
approximateComputation, 
unionElimination, 
equalitySymmetry, 
equalityTransitivity, 
dependent_set_memberEquality_alt, 
dependent_pairEquality_alt, 
independent_pairEquality, 
isect_memberEquality_alt, 
cumulativity, 
instantiate, 
setEquality
Latex:
\mforall{}p:\{p:\{2...\}|  prime(p)\}  .  finite(x:\mBbbN{}  \mtimes{}  y:\mBbbN{}  \mtimes{}  \{z:\mBbbN{}|  ((x  *  x)  +  (4  *  y  *  z))  =  p\}  )
Date html generated:
2020_05_19-PM-10_04_09
Last ObjectModification:
2019_12_26-AM-11_44_54
Theory : num_thy_1
Home
Index