Nuprl Lemma : rel_exp-one-one

[B:Type]. ∀[R:B ⟶ B ⟶ ℙ].  ∀[n:ℕ]. one-one(B;B;R^n) supposing one-one(B;B;R)


Proof




Definitions occuring in Statement :  one-one: one-one(A;B;R) rel_exp: R^n nat: uimplies: supposing a uall: [x:A]. B[x] prop: function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: implies:  Q false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: one-one: one-one(A;B;R) subtype_rel: A ⊆B rel_exp: R^n eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt decidable: Dec(P) or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff iff: ⇐⇒ Q rev_implies:  Q infix_ap: y
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf rel_exp_wf equal_wf le_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf one-one_wf eq_int_wf bool_wf equal-wf-base int_subtype_base assert_wf bnot_wf not_wf exists_wf infix_ap_wf uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination axiomEquality applyEquality cumulativity functionExtensionality because_Cache equalityTransitivity equalitySymmetry dependent_set_memberEquality unionElimination functionEquality universeEquality baseApply closedConclusion baseClosed productElimination productEquality instantiate equalityElimination impliesFunctionality hyp_replacement applyLambdaEquality

Latex:
\mforall{}[B:Type].  \mforall{}[R:B  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].    \mforall{}[n:\mBbbN{}].  one-one(B;B;rel\_exp(B;  R;  n))  supposing  one-one(B;B;R)



Date html generated: 2017_04_17-AM-09_28_09
Last ObjectModification: 2017_02_27-PM-05_29_02

Theory : relations2


Home Index