Nuprl Lemma : rel_exp-one-one
∀[B:Type]. ∀[R:B ⟶ B ⟶ ℙ]. ∀[n:ℕ]. one-one(B;B;R^n) supposing one-one(B;B;R)
Proof
Definitions occuring in Statement :
one-one: one-one(A;B;R)
,
rel_exp: R^n
,
nat: ℕ
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
not: ¬A
,
all: ∀x:A. B[x]
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
one-one: one-one(A;B;R)
,
subtype_rel: A ⊆r B
,
rel_exp: R^n
,
eq_int: (i =z j)
,
subtract: n - m
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
decidable: Dec(P)
,
or: P ∨ Q
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
uiff: uiff(P;Q)
,
bfalse: ff
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
infix_ap: x f y
Lemmas referenced :
nat_properties,
satisfiable-full-omega-tt,
intformand_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
intformless_wf,
int_formula_prop_and_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
ge_wf,
less_than_wf,
rel_exp_wf,
equal_wf,
le_wf,
decidable__le,
subtract_wf,
intformnot_wf,
itermSubtract_wf,
int_formula_prop_not_lemma,
int_term_value_subtract_lemma,
nat_wf,
one-one_wf,
eq_int_wf,
bool_wf,
equal-wf-base,
int_subtype_base,
assert_wf,
bnot_wf,
not_wf,
exists_wf,
infix_ap_wf,
uiff_transitivity,
eqtt_to_assert,
assert_of_eq_int,
iff_transitivity,
iff_weakening_uiff,
eqff_to_assert,
assert_of_bnot
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
setElimination,
rename,
intWeakElimination,
lambdaFormation,
natural_numberEquality,
independent_isectElimination,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
intEquality,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
sqequalRule,
independent_pairFormation,
computeAll,
independent_functionElimination,
axiomEquality,
applyEquality,
cumulativity,
functionExtensionality,
because_Cache,
equalityTransitivity,
equalitySymmetry,
dependent_set_memberEquality,
unionElimination,
functionEquality,
universeEquality,
baseApply,
closedConclusion,
baseClosed,
productElimination,
productEquality,
instantiate,
equalityElimination,
impliesFunctionality,
hyp_replacement,
applyLambdaEquality
Latex:
\mforall{}[B:Type]. \mforall{}[R:B {}\mrightarrow{} B {}\mrightarrow{} \mBbbP{}]. \mforall{}[n:\mBbbN{}]. one-one(B;B;rel\_exp(B; R; n)) supposing one-one(B;B;R)
Date html generated:
2017_04_17-AM-09_28_09
Last ObjectModification:
2017_02_27-PM-05_29_02
Theory : relations2
Home
Index