Nuprl Lemma : set-axiom-of-choice-implies-xmiddle
Set-AC 
⇒ (∀P:ℙ. ((↓P) ∨ (¬P)))
Proof
Definitions occuring in Statement : 
set-axiom-of-choice: Set-AC
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
Definitions unfolded in proof : 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
set-axiom-of-choice: Set-AC
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
int_seg: {i..j-}
, 
or: P ∨ Q
, 
prop: ℙ
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
nequal: a ≠ b ∈ T 
, 
subtype_rel: A ⊆r B
, 
decidable: Dec(P)
, 
top: Top
, 
eq_int: (i =z j)
, 
ext-eq: A ≡ B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
int_seg_wf, 
ifthenelse_wf, 
eq_int_wf, 
or_wf, 
equal-wf-T-base, 
set-axiom-of-choice_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
false_wf, 
lelt_wf, 
decidable__equal_int_seg, 
le_antisymmetry_iff, 
add_functionality_wrt_le, 
add-associates, 
add-swap, 
add-commutes, 
add-zero, 
le-add-cancel, 
not_wf, 
squash_wf, 
subtype_rel_sets
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
cut, 
hypothesis, 
dependent_functionElimination, 
thin, 
introduction, 
extract_by_obid, 
isectElimination, 
natural_numberEquality, 
lambdaEquality, 
instantiate, 
setElimination, 
rename, 
hypothesisEquality, 
universeEquality, 
setEquality, 
intEquality, 
baseClosed, 
because_Cache, 
independent_functionElimination, 
sqequalRule, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
dependent_pairFormation, 
promote_hyp, 
cumulativity, 
voidElimination, 
dependent_set_memberEquality, 
independent_pairFormation, 
imageMemberEquality, 
inlFormation, 
applyEquality, 
functionExtensionality, 
applyLambdaEquality, 
imageElimination, 
addEquality, 
isect_memberEquality, 
voidEquality, 
inrFormation
Latex:
Set-AC  {}\mRightarrow{}  (\mforall{}P:\mBbbP{}.  ((\mdownarrow{}P)  \mvee{}  (\mneg{}P)))
Date html generated:
2017_04_14-AM-07_37_44
Last ObjectModification:
2017_02_27-PM-03_10_05
Theory : subtype_1
Home
Index