Nuprl Lemma : shorten-tuple_wf2

[L1,L2:Type List]. ∀[x:tuple-type(L1 L2)].  shorten-tuple(x;||L1||) ∈ tuple-type(L2) supposing 0 < ||L2||


Proof




Definitions occuring in Statement :  shorten-tuple: shorten-tuple(x;n) tuple-type: tuple-type(L) length: ||as|| append: as bs list: List less_than: a < b uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q le: A ≤ B satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: less_than: a < b squash: T subtype_rel: A ⊆B guard: {T} int_iseg: {i...j} cand: c∧ B
Lemmas referenced :  list_wf tuple-type_wf less_than_wf int_seg_wf top_wf subtype_rel_list int_term_value_subtract_lemma int_formula_prop_eq_lemma itermSubtract_wf intformeq_wf le_wf and_wf length_nth_tl length_append int_seg_properties select_wf subtype_rel-equal nth_tl_append nth_tl_wf subtype_rel_tuple-type lelt_wf int_term_value_add_lemma int_formula_prop_less_lemma itermAdd_wf intformless_wf length_wf decidable__lt length-append int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le non_neg_length append_wf shorten-tuple_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin instantiate universeEquality hypothesisEquality hypothesis dependent_set_memberEquality because_Cache independent_pairFormation dependent_functionElimination unionElimination productElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule computeAll addEquality imageElimination applyEquality lambdaFormation setElimination rename equalityTransitivity equalitySymmetry cumulativity axiomEquality

Latex:
\mforall{}[L1,L2:Type  List].  \mforall{}[x:tuple-type(L1  @  L2)].
    shorten-tuple(x;||L1||)  \mmember{}  tuple-type(L2)  supposing  0  <  ||L2||



Date html generated: 2016_05_14-PM-03_58_38
Last ObjectModification: 2016_01_14-PM-10_35_28

Theory : tuples


Home Index