Nuprl Lemma : shorten-tuple_wf2
∀[L1,L2:Type List]. ∀[x:tuple-type(L1 @ L2)].  shorten-tuple(x;||L1||) ∈ tuple-type(L2) supposing 0 < ||L2||
Proof
Definitions occuring in Statement : 
shorten-tuple: shorten-tuple(x;n)
, 
tuple-type: tuple-type(L)
, 
length: ||as||
, 
append: as @ bs
, 
list: T List
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
le: A ≤ B
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
less_than: a < b
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
int_iseg: {i...j}
, 
cand: A c∧ B
Lemmas referenced : 
list_wf, 
tuple-type_wf, 
less_than_wf, 
int_seg_wf, 
top_wf, 
subtype_rel_list, 
int_term_value_subtract_lemma, 
int_formula_prop_eq_lemma, 
itermSubtract_wf, 
intformeq_wf, 
le_wf, 
and_wf, 
length_nth_tl, 
length_append, 
int_seg_properties, 
select_wf, 
subtype_rel-equal, 
nth_tl_append, 
nth_tl_wf, 
subtype_rel_tuple-type, 
lelt_wf, 
int_term_value_add_lemma, 
int_formula_prop_less_lemma, 
itermAdd_wf, 
intformless_wf, 
length_wf, 
decidable__lt, 
length-append, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
non_neg_length, 
append_wf, 
shorten-tuple_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
instantiate, 
universeEquality, 
hypothesisEquality, 
hypothesis, 
dependent_set_memberEquality, 
because_Cache, 
independent_pairFormation, 
dependent_functionElimination, 
unionElimination, 
productElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
computeAll, 
addEquality, 
imageElimination, 
applyEquality, 
lambdaFormation, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
cumulativity, 
axiomEquality
Latex:
\mforall{}[L1,L2:Type  List].  \mforall{}[x:tuple-type(L1  @  L2)].
    shorten-tuple(x;||L1||)  \mmember{}  tuple-type(L2)  supposing  0  <  ||L2||
Date html generated:
2016_05_14-PM-03_58_38
Last ObjectModification:
2016_01_14-PM-10_35_28
Theory : tuples
Home
Index