Nuprl Lemma : has-value-equality-fix-bar
∀[T,E,S:Type].  ∀[G:T ⟶ bar(E)]. ∀[g:T ⟶ T].  ((G fix(g))↓ ∈ ℙ) supposing value-type(E) ∧ (⊥ ∈ T)
Proof
Definitions occuring in Statement : 
bar: bar(T)
, 
value-type: value-type(T)
, 
has-value: (a)↓
, 
bottom: ⊥
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
member: t ∈ T
, 
apply: f a
, 
fix: fix(F)
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
top: Top
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
cand: A c∧ B
, 
squash: ↓T
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
has-value: (a)↓
, 
nat: ℕ
, 
false: False
, 
ge: i ≥ j 
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
true: True
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
istype-universe, 
bar_wf, 
value-type_wf, 
pair-eta, 
subtype_rel_product, 
top_wf, 
istype-top, 
istype-void, 
has-value_wf_base, 
pi1_wf_top, 
member_wf, 
has-value-extensionality, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
fun_exp0_lemma, 
subtract-1-ge-0, 
equal_wf, 
fun_exp_wf, 
squash_wf, 
true_wf, 
nat_wf, 
decidable__equal_int, 
intformnot_wf, 
intformeq_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
decidable__le, 
le_wf, 
iff_weakening_equal, 
has-value_wf-bar, 
is-exception_wf, 
fixpoint-upper-bound, 
has-value-monotonic, 
set_subtype_base, 
int_subtype_base
Rules used in proof : 
functionIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
universeIsType, 
sqequalRule, 
productIsType, 
equalityIsType4, 
baseClosed, 
because_Cache, 
universeEquality, 
isect_memberFormation_alt, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality_alt, 
independent_pairEquality, 
lambdaFormation_alt, 
pointwiseFunctionality, 
productElimination, 
applyEquality, 
functionEquality, 
lambdaEquality_alt, 
closedConclusion, 
independent_isectElimination, 
voidElimination, 
baseApply, 
applyLambdaEquality, 
independent_pairFormation, 
instantiate, 
imageElimination, 
compactness, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
dependent_functionElimination, 
functionIsTypeImplies, 
unionElimination, 
dependent_set_memberEquality_alt, 
imageMemberEquality, 
axiomSqleEquality, 
equalityIsType1, 
hyp_replacement, 
sqleRule, 
divergentSqle, 
sqleReflexivity, 
intEquality
Latex:
\mforall{}[T,E,S:Type].    \mforall{}[G:T  {}\mrightarrow{}  bar(E)].  \mforall{}[g:T  {}\mrightarrow{}  T].    ((G  fix(g))\mdownarrow{}  \mmember{}  \mBbbP{})  supposing  value-type(E)  \mwedge{}  (\mbot{}  \mmember{}  T)
Date html generated:
2019_10_16-AM-11_37_45
Last ObjectModification:
2018_10_11-PM-11_40_03
Theory : bar!type
Home
Index