Nuprl Lemma : coW2natinf_wf

[n:ℕ]. ∀[w:coW(ℕ2;x.if (x =z 0) then Void else Unit fi )].  (coW2natinf(w;n) ∈ 𝔹)


Proof




Definitions occuring in Statement :  coW2natinf: coW2natinf(w;n) coW: coW(A;a.B[a]) int_seg: {i..j-} nat: ifthenelse: if then else fi  eq_int: (i =z j) bool: 𝔹 uall: [x:A]. B[x] unit: Unit member: t ∈ T natural_number: $n void: Void
Definitions unfolded in proof :  ext-eq: A ≡ B lelt: i ≤ j < k assert: b bnot: ¬bb sq_type: SQType(T) bfalse: ff uiff: uiff(P;Q) it: unit: Unit bool: 𝔹 pi2: snd(t) coW-item: coW-item(w;b) or: P ∨ Q decidable: Dec(P) btrue: tt ifthenelse: if then else fi  subtract: m eq_int: (i =z j) pi1: fst(t) coW2natinf: coW2natinf(w;n) guard: {T} subtype_rel: A ⊆B so_apply: x[s] int_seg: {i..j-} so_lambda: λ2x.t[x] prop: and: P ∧ Q top: Top all: x:A. B[x] exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a ge: i ≥  false: False implies:  Q nat: member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  nat_wf int_formula_prop_eq_lemma intformeq_wf int_seg_properties subtype_rel-equal it_wf neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert assert_of_eq_int eqtt_to_assert int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le bfalse_wf btrue_wf bool_wf subtype_rel_weakening coW-ext unit_wf2 eq_int_wf ifthenelse_wf int_seg_wf coW_wf less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf full-omega-unsat nat_properties
Rules used in proof :  cumulativity promote_hyp equalityElimination unionElimination productElimination functionEquality productEquality applyEquality because_Cache hypothesis_subsumption universeEquality instantiate equalitySymmetry equalityTransitivity axiomEquality independent_pairFormation voidEquality voidElimination isect_memberEquality dependent_functionElimination intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_functionElimination approximateComputation independent_isectElimination natural_numberEquality lambdaFormation intWeakElimination sqequalRule rename setElimination hypothesis hypothesisEquality isectElimination sqequalHypSubstitution extract_by_obid thin cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[w:coW(\mBbbN{}2;x.if  (x  =\msubz{}  0)  then  Void  else  Unit  fi  )].    (coW2natinf(w;n)  \mmember{}  \mBbbB{})



Date html generated: 2018_07_29-AM-09_29_16
Last ObjectModification: 2018_07_27-PM-03_25_40

Theory : basic


Home Index