Nuprl Lemma : coW2natinf_wf
∀[n:ℕ]. ∀[w:coW(ℕ2;x.if (x =z 0) then Void else Unit fi )].  (coW2natinf(w;n) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
coW2natinf: coW2natinf(w;n)
, 
coW: coW(A;a.B[a])
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
ifthenelse: if b then t else f fi 
, 
eq_int: (i =z j)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
unit: Unit
, 
member: t ∈ T
, 
natural_number: $n
, 
void: Void
Definitions unfolded in proof : 
ext-eq: A ≡ B
, 
lelt: i ≤ j < k
, 
assert: ↑b
, 
bnot: ¬bb
, 
sq_type: SQType(T)
, 
bfalse: ff
, 
uiff: uiff(P;Q)
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
pi2: snd(t)
, 
coW-item: coW-item(w;b)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
subtract: n - m
, 
eq_int: (i =z j)
, 
pi1: fst(t)
, 
coW2natinf: coW2natinf(w;n)
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
top: Top
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
uimplies: b supposing a
, 
ge: i ≥ j 
, 
false: False
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
nat_wf, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
int_seg_properties, 
subtype_rel-equal, 
it_wf, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
assert_of_eq_int, 
eqtt_to_assert, 
int_term_value_subtract_lemma, 
int_formula_prop_not_lemma, 
itermSubtract_wf, 
intformnot_wf, 
subtract_wf, 
decidable__le, 
bfalse_wf, 
btrue_wf, 
bool_wf, 
subtype_rel_weakening, 
coW-ext, 
unit_wf2, 
eq_int_wf, 
ifthenelse_wf, 
int_seg_wf, 
coW_wf, 
less_than_wf, 
ge_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
full-omega-unsat, 
nat_properties
Rules used in proof : 
cumulativity, 
promote_hyp, 
equalityElimination, 
unionElimination, 
productElimination, 
functionEquality, 
productEquality, 
applyEquality, 
because_Cache, 
hypothesis_subsumption, 
universeEquality, 
instantiate, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
independent_pairFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
natural_numberEquality, 
lambdaFormation, 
intWeakElimination, 
sqequalRule, 
rename, 
setElimination, 
hypothesis, 
hypothesisEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
thin, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[w:coW(\mBbbN{}2;x.if  (x  =\msubz{}  0)  then  Void  else  Unit  fi  )].    (coW2natinf(w;n)  \mmember{}  \mBbbB{})
Date html generated:
2018_07_29-AM-09_29_16
Last ObjectModification:
2018_07_27-PM-03_25_40
Theory : basic
Home
Index