Nuprl Lemma : coW2natinf_wf
∀[n:ℕ]. ∀[w:coW(ℕ2;x.if (x =z 0) then Void else Unit fi )]. (coW2natinf(w;n) ∈ 𝔹)
Proof
Definitions occuring in Statement :
coW2natinf: coW2natinf(w;n)
,
coW: coW(A;a.B[a])
,
int_seg: {i..j-}
,
nat: ℕ
,
ifthenelse: if b then t else f fi
,
eq_int: (i =z j)
,
bool: 𝔹
,
uall: ∀[x:A]. B[x]
,
unit: Unit
,
member: t ∈ T
,
natural_number: $n
,
void: Void
Definitions unfolded in proof :
ext-eq: A ≡ B
,
lelt: i ≤ j < k
,
assert: ↑b
,
bnot: ¬bb
,
sq_type: SQType(T)
,
bfalse: ff
,
uiff: uiff(P;Q)
,
it: ⋅
,
unit: Unit
,
bool: 𝔹
,
pi2: snd(t)
,
coW-item: coW-item(w;b)
,
or: P ∨ Q
,
decidable: Dec(P)
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
subtract: n - m
,
eq_int: (i =z j)
,
pi1: fst(t)
,
coW2natinf: coW2natinf(w;n)
,
guard: {T}
,
subtype_rel: A ⊆r B
,
so_apply: x[s]
,
int_seg: {i..j-}
,
so_lambda: λ2x.t[x]
,
prop: ℙ
,
and: P ∧ Q
,
top: Top
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
not: ¬A
,
uimplies: b supposing a
,
ge: i ≥ j
,
false: False
,
implies: P
⇒ Q
,
nat: ℕ
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
Lemmas referenced :
nat_wf,
int_formula_prop_eq_lemma,
intformeq_wf,
int_seg_properties,
subtype_rel-equal,
it_wf,
neg_assert_of_eq_int,
assert-bnot,
bool_subtype_base,
subtype_base_sq,
bool_cases_sqequal,
equal_wf,
eqff_to_assert,
assert_of_eq_int,
eqtt_to_assert,
int_term_value_subtract_lemma,
int_formula_prop_not_lemma,
itermSubtract_wf,
intformnot_wf,
subtract_wf,
decidable__le,
bfalse_wf,
btrue_wf,
bool_wf,
subtype_rel_weakening,
coW-ext,
unit_wf2,
eq_int_wf,
ifthenelse_wf,
int_seg_wf,
coW_wf,
less_than_wf,
ge_wf,
int_formula_prop_wf,
int_formula_prop_less_lemma,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_formula_prop_le_lemma,
int_formula_prop_and_lemma,
intformless_wf,
itermVar_wf,
itermConstant_wf,
intformle_wf,
intformand_wf,
full-omega-unsat,
nat_properties
Rules used in proof :
cumulativity,
promote_hyp,
equalityElimination,
unionElimination,
productElimination,
functionEquality,
productEquality,
applyEquality,
because_Cache,
hypothesis_subsumption,
universeEquality,
instantiate,
equalitySymmetry,
equalityTransitivity,
axiomEquality,
independent_pairFormation,
voidEquality,
voidElimination,
isect_memberEquality,
dependent_functionElimination,
intEquality,
int_eqEquality,
lambdaEquality,
dependent_pairFormation,
independent_functionElimination,
approximateComputation,
independent_isectElimination,
natural_numberEquality,
lambdaFormation,
intWeakElimination,
sqequalRule,
rename,
setElimination,
hypothesis,
hypothesisEquality,
isectElimination,
sqequalHypSubstitution,
extract_by_obid,
thin,
cut,
introduction,
isect_memberFormation,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution
Latex:
\mforall{}[n:\mBbbN{}]. \mforall{}[w:coW(\mBbbN{}2;x.if (x =\msubz{} 0) then Void else Unit fi )]. (coW2natinf(w;n) \mmember{} \mBbbB{})
Date html generated:
2018_07_29-AM-09_29_16
Last ObjectModification:
2018_07_27-PM-03_25_40
Theory : basic
Home
Index