Nuprl Lemma : can-apply-fun-exp-add-iff

[A:Type]. ∀[n,m:ℕ]. ∀[f:A ⟶ (A Top)]. ∀[x:A].
  uiff(↑can-apply(f^n m;x);(↑can-apply(f^m;x)) ∧ (↑can-apply(f^n;do-apply(f^m;x))))


Proof




Definitions occuring in Statement :  p-fun-exp: f^n do-apply: do-apply(f;x) can-apply: can-apply(f;x) nat: assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] top: Top and: P ∧ Q function: x:A ⟶ B[x] union: left right add: m universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a guard: {T} subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] top: Top implies:  Q prop: nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A squash: T true: True rev_uimplies: rev_uimplies(P;Q) can-apply: can-apply(f;x) p-compose: g bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff
Lemmas referenced :  can-apply-fun-exp-add assert_witness can-apply_wf p-fun-exp_wf subtype_rel_dep_function subtype_rel_union top_wf do-apply_wf assert_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf nat_wf assert_functionality_wrt_uiff p-compose_wf squash_wf true_wf p-fun-exp-add bool_wf equal-wf-T-base bnot_wf not_wf eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality independent_isectElimination hypothesis productElimination sqequalRule independent_pairEquality cumulativity functionExtensionality applyEquality lambdaEquality lambdaFormation isect_memberEquality voidElimination voidEquality independent_functionElimination dependent_set_memberEquality addEquality setElimination rename dependent_functionElimination natural_numberEquality unionElimination dependent_pairFormation int_eqEquality intEquality computeAll unionEquality productEquality equalityTransitivity equalitySymmetry functionEquality universeEquality imageElimination imageMemberEquality baseClosed equalityElimination

Latex:
\mforall{}[A:Type].  \mforall{}[n,m:\mBbbN{}].  \mforall{}[f:A  {}\mrightarrow{}  (A  +  Top)].  \mforall{}[x:A].
    uiff(\muparrow{}can-apply(f\^{}n  +  m;x);(\muparrow{}can-apply(f\^{}m;x))  \mwedge{}  (\muparrow{}can-apply(f\^{}n;do-apply(f\^{}m;x))))



Date html generated: 2017_10_01-AM-09_14_51
Last ObjectModification: 2017_07_26-PM-04_49_46

Theory : general


Home Index