Nuprl Lemma : equal-nil-lists

[T:Type]. ∀[x,y:Top List].  (x y ∈ (T List)) supposing ((↑null(y)) and (↑null(x)))


Proof




Definitions occuring in Statement :  null: null(as) list: List assert: b uimplies: supposing a uall: [x:A]. B[x] top: Top universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q assert: b ifthenelse: if then else fi  btrue: tt cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) bfalse: ff decidable: Dec(P) less_than: a < b squash: T less_than': less_than'(a;b)
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf assert_wf null_wf3 equal-wf-T-base nat_wf colength_wf_list top_wf less_than_transitivity1 less_than_irreflexivity list-cases nil_wf null_nil_lemma true_wf product_subtype_list spread_cons_lemma equal_wf subtype_base_sq set_subtype_base le_wf int_subtype_base null_cons_lemma false_wf intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma subtract_wf itermSubtract_wf int_term_value_subtract_lemma decidable__equal_int list_induction isect_wf cons_wf list_wf assert_elim bfalse_wf btrue_neq_bfalse
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry because_Cache applyEquality unionElimination cumulativity promote_hyp hypothesis_subsumption productElimination baseClosed instantiate applyLambdaEquality dependent_set_memberEquality addEquality imageElimination addLevel levelHypothesis universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x,y:Top  List].    (x  =  y)  supposing  ((\muparrow{}null(y))  and  (\muparrow{}null(x)))



Date html generated: 2018_05_21-PM-07_36_16
Last ObjectModification: 2017_07_26-PM-05_10_18

Theory : general


Home Index