Nuprl Lemma : fseg_select

[T:Type]
  ∀l1,l2:T List.
    (fseg(T;l1;l2) ⇐⇒ (||l1|| ≤ ||l2||) c∧ (∀i:ℕl1[i] l2[(||l2|| ||l1||) i] ∈ supposing i < ||l1||))


Proof




Definitions occuring in Statement :  fseg: fseg(T;L1;L2) select: L[n] length: ||as|| list: List nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] cand: c∧ B le: A ≤ B all: x:A. B[x] iff: ⇐⇒ Q subtract: m add: m universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q cand: c∧ B member: t ∈ T uimplies: supposing a le: A ≤ B nat: prop: rev_implies:  Q ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False less_than: a < b squash: T fseg: fseg(T;L1;L2) subtype_rel: A ⊆B true: True guard: {T} uiff: uiff(P;Q) int_seg: {i..j-} lelt: i ≤ j < k int_iseg: {i...j}
Lemmas referenced :  fseg_length le_witness_for_triv istype-less_than length_wf istype-nat fseg_wf istype-le select_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf subtract_wf itermAdd_wf itermSubtract_wf int_term_value_add_lemma int_term_value_subtract_lemma decidable__lt intformless_wf int_formula_prop_less_lemma equal_wf add_nat_wf subtract_nat_wf append_wf le_wf squash_wf true_wf length_append subtype_rel_list top_wf subtype_rel_self iff_weakening_equal non_neg_length length-append add-is-int-iff subtract-is-int-iff intformeq_wf int_formula_prop_eq_lemma false_wf istype-universe select_append_back add_functionality_wrt_eq less_than_wf list_wf decidable__equal_int firstn_wf list_extensionality nth_tl_wf length_nth_tl select-nth_tl append_firstn_lastn
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt independent_pairFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis productElimination equalityTransitivity equalitySymmetry setElimination rename universeIsType sqequalRule productIsType functionIsType isectIsType because_Cache equalityIstype dependent_functionElimination natural_numberEquality unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  voidElimination addEquality imageElimination dependent_set_memberEquality_alt inhabitedIsType hyp_replacement applyLambdaEquality applyEquality imageMemberEquality baseClosed instantiate universeEquality pointwiseFunctionality promote_hyp baseApply closedConclusion productEquality intEquality

Latex:
\mforall{}[T:Type]
    \mforall{}l1,l2:T  List.
        (fseg(T;l1;l2)
        \mLeftarrow{}{}\mRightarrow{}  (||l1||  \mleq{}  ||l2||)  c\mwedge{}  (\mforall{}i:\mBbbN{}.  l1[i]  =  l2[(||l2||  -  ||l1||)  +  i]  supposing  i  <  ||l1||))



Date html generated: 2020_05_20-AM-08_06_18
Last ObjectModification: 2019_12_31-PM-05_00_01

Theory : general


Home Index