Nuprl Lemma : iseg_product-split

[i,j,k:ℤ].  (iseg_product(i;j) iseg_product(i;k) iseg_product(k 1;j)) supposing (k < and (i ≤ k) and (1 ≤ i))


Proof




Definitions occuring in Statement :  iseg_product: iseg_product(i;j) less_than: a < b uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B multiply: m add: m natural_number: $n int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] iseg_product: iseg_product(i;j) all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top and: P ∧ Q prop: sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) ge: i ≥  subtract: m
Lemmas referenced :  mul-commutes zero-add add-zero zero-mul add-commutes add-mul-special add-swap minus-one-mul minus-minus minus-add add-associates nat_properties combinations_wf false_wf int_formula_prop_eq_lemma intformeq_wf multiply-is-int-iff decidable__equal_int int_term_value_mul_lemma itermMultiply_wf combinations_wf_int less_than_wf int_term_value_subtract_lemma int_term_value_add_lemma itermSubtract_wf itermAdd_wf subtract_wf le_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le combinations-split int_subtype_base set_subtype_base subtype_base_sq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination because_Cache independent_isectElimination sqequalRule hypothesis dependent_set_memberEquality dependent_functionElimination unionElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality hypothesisEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll addEquality equalityTransitivity equalitySymmetry independent_functionElimination sqequalAxiom multiplyEquality minusEquality pointwiseFunctionality rename promote_hyp baseApply closedConclusion baseClosed productElimination applyEquality setElimination setEquality

Latex:
\mforall{}[i,j,k:\mBbbZ{}].
    (iseg\_product(i;j)  \msim{}  iseg\_product(i;k)  *  iseg\_product(k  +  1;j))  supposing 
          (k  <  j  and 
          (i  \mleq{}  k)  and 
          (1  \mleq{}  i))



Date html generated: 2016_05_15-PM-06_01_48
Last ObjectModification: 2016_01_16-PM-00_41_32

Theory : general


Home Index