Nuprl Lemma : iseg_product-split
∀[i,j,k:ℤ].  (iseg_product(i;j) ~ iseg_product(i;k) * iseg_product(k + 1;j)) supposing (k < j and (i ≤ k) and (1 ≤ i))
Proof
Definitions occuring in Statement : 
iseg_product: iseg_product(i;j)
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iseg_product: iseg_product(i;j)
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
sq_type: SQType(T)
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
ge: i ≥ j 
, 
subtract: n - m
Lemmas referenced : 
mul-commutes, 
zero-add, 
add-zero, 
zero-mul, 
add-commutes, 
add-mul-special, 
add-swap, 
minus-one-mul, 
minus-minus, 
minus-add, 
add-associates, 
nat_properties, 
combinations_wf, 
false_wf, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
multiply-is-int-iff, 
decidable__equal_int, 
int_term_value_mul_lemma, 
itermMultiply_wf, 
combinations_wf_int, 
less_than_wf, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
itermSubtract_wf, 
itermAdd_wf, 
subtract_wf, 
le_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
combinations-split, 
int_subtype_base, 
set_subtype_base, 
subtype_base_sq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
sqequalRule, 
hypothesis, 
dependent_set_memberEquality, 
dependent_functionElimination, 
unionElimination, 
natural_numberEquality, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
hypothesisEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
addEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
sqequalAxiom, 
multiplyEquality, 
minusEquality, 
pointwiseFunctionality, 
rename, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed, 
productElimination, 
applyEquality, 
setElimination, 
setEquality
Latex:
\mforall{}[i,j,k:\mBbbZ{}].
    (iseg\_product(i;j)  \msim{}  iseg\_product(i;k)  *  iseg\_product(k  +  1;j))  supposing 
          (k  <  j  and 
          (i  \mleq{}  k)  and 
          (1  \mleq{}  i))
Date html generated:
2016_05_15-PM-06_01_48
Last ObjectModification:
2016_01_16-PM-00_41_32
Theory : general
Home
Index