Nuprl Lemma : combinations-split

[m,n,k:ℕ].  C(n k;m) (C(k;m) C(n;m k)) ∈ ℤ supposing (n k) ≤ m


Proof




Definitions occuring in Statement :  combinations: C(n;m) nat: uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B multiply: m subtract: m add: m int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: less_than': less_than'(a;b) le: A ≤ B btrue: tt eq_int: (i =z j) ifthenelse: if then else fi  combinations_aux: combinations_aux(b;n;m) combinations: C(n;m) guard: {T} sq_type: SQType(T) or: P ∨ Q decidable: Dec(P) so_apply: x[s] so_lambda: λ2x.t[x] bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff subtype_rel: A ⊆B bnot: ¬bb assert: b nequal: a ≠ b ∈  int_upper: {i...} subtract: m
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than le_wf nat_wf subtract-1-ge-0 subtract_wf false_wf combinations_wf_int decidable__le int_term_value_add_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermAdd_wf intformeq_wf intformnot_wf satisfiable-full-omega-tt decidable__equal_int int_subtype_base set_subtype_base subtype_base_sq combinations-step eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_subtype_base bool_cases_sqequal bool_wf assert-bnot neg_assert_of_eq_int upper_subtype_nat istype-false nequal-le-implies zero-add add-commutes int_upper_properties add-associates minus-zero one-mul add-zero int_term_value_subtract_lemma itermSubtract_wf int_term_value_mul_lemma itermMultiply_wf minus-add minus-minus minus-one-mul add-swap mul-associates
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation_alt natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType axiomEquality isectIsTypeImplies inhabitedIsType functionIsTypeImplies addEquality because_Cache productElimination lambdaFormation multiplyEquality equalitySymmetry equalityTransitivity dependent_set_memberEquality computeAll voidEquality isect_memberEquality dependent_pairFormation unionElimination lambdaEquality intEquality cumulativity instantiate dependent_set_memberEquality_alt equalityElimination equalityIsType4 baseApply closedConclusion baseClosed applyEquality promote_hyp equalityIsType1 hypothesis_subsumption minusEquality

Latex:
\mforall{}[m,n,k:\mBbbN{}].    C(n  +  k;m)  =  (C(k;m)  *  C(n;m  -  k))  supposing  (n  +  k)  \mleq{}  m



Date html generated: 2019_10_15-AM-11_16_19
Last ObjectModification: 2018_10_16-PM-03_13_36

Theory : general


Home Index