Nuprl Lemma : combinations-split
∀[m,n,k:ℕ].  C(n + k;m) = (C(k;m) * C(n;m - k)) ∈ ℤ supposing (n + k) ≤ m
Proof
Definitions occuring in Statement : 
combinations: C(n;m)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
multiply: n * m
, 
subtract: n - m
, 
add: n + m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
btrue: tt
, 
eq_int: (i =z j)
, 
ifthenelse: if b then t else f fi 
, 
combinations_aux: combinations_aux(b;n;m)
, 
combinations: C(n;m)
, 
guard: {T}
, 
sq_type: SQType(T)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
subtype_rel: A ⊆r B
, 
bnot: ¬bb
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
int_upper: {i...}
, 
subtract: n - m
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
le_wf, 
nat_wf, 
subtract-1-ge-0, 
subtract_wf, 
false_wf, 
combinations_wf_int, 
decidable__le, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
itermAdd_wf, 
intformeq_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
decidable__equal_int, 
int_subtype_base, 
set_subtype_base, 
subtype_base_sq, 
combinations-step, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_subtype_base, 
bool_cases_sqequal, 
bool_wf, 
assert-bnot, 
neg_assert_of_eq_int, 
upper_subtype_nat, 
istype-false, 
nequal-le-implies, 
zero-add, 
add-commutes, 
int_upper_properties, 
add-associates, 
minus-zero, 
one-mul, 
add-zero, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
int_term_value_mul_lemma, 
itermMultiply_wf, 
minus-add, 
minus-minus, 
minus-one-mul, 
add-swap, 
mul-associates
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation_alt, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
functionIsTypeImplies, 
addEquality, 
because_Cache, 
productElimination, 
lambdaFormation, 
multiplyEquality, 
equalitySymmetry, 
equalityTransitivity, 
dependent_set_memberEquality, 
computeAll, 
voidEquality, 
isect_memberEquality, 
dependent_pairFormation, 
unionElimination, 
lambdaEquality, 
intEquality, 
cumulativity, 
instantiate, 
dependent_set_memberEquality_alt, 
equalityElimination, 
equalityIsType4, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
promote_hyp, 
equalityIsType1, 
hypothesis_subsumption, 
minusEquality
Latex:
\mforall{}[m,n,k:\mBbbN{}].    C(n  +  k;m)  =  (C(k;m)  *  C(n;m  -  k))  supposing  (n  +  k)  \mleq{}  m
Date html generated:
2019_10_15-AM-11_16_19
Last ObjectModification:
2018_10_16-PM-03_13_36
Theory : general
Home
Index