Nuprl Lemma : nim-grp_wf
nim-grp() ∈ AbDGrp
Proof
Definitions occuring in Statement : 
nim-grp: nim-grp()
, 
member: t ∈ T
, 
abdgrp: AbDGrp
Definitions unfolded in proof : 
member: t ∈ T
, 
abdgrp: AbDGrp
, 
abgrp: AbGrp
, 
grp: Group{i}
, 
mon: Mon
, 
nim-grp: nim-grp()
, 
grp_sig: GrpSig
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
monoid_p: IsMonoid(T;op;id)
, 
grp_car: |g|
, 
pi1: fst(t)
, 
grp_op: *
, 
pi2: snd(t)
, 
grp_id: e
, 
ident: Ident(T;op;id)
, 
assoc: Assoc(T;op)
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
top: Top
, 
cand: A c∧ B
, 
ge: i ≥ j 
, 
subtype_rel: A ⊆r B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
inverse: Inverse(T;op;id;inv)
, 
grp_inv: ~
, 
comm: Comm(T;op)
, 
eqfun_p: IsEqFun(T;eq)
, 
grp_eq: =b
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
nat_wf, 
eq_int_wf, 
le_int_wf, 
nim-sum_wf, 
false_wf, 
le_wf, 
bool_wf, 
nim_sum0_lemma, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformnot_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf, 
nim-sum-assoc, 
nim-sum-0, 
monoid_p_wf, 
grp_car_wf, 
grp_op_wf, 
grp_id_wf, 
nim-sum-same, 
inverse_wf, 
grp_inv_wf, 
nim-sum-com, 
comm_wf, 
assert_of_eq_int, 
assert_wf, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
assert_witness, 
equal_wf, 
eqfun_p_wf, 
grp_eq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_set_memberEquality, 
dependent_pairEquality, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
lambdaEquality, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesisEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
lambdaFormation, 
functionEquality, 
productEquality, 
cumulativity, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
isect_memberFormation, 
applyEquality, 
unionElimination, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
axiomEquality, 
productElimination, 
independent_pairEquality
Latex:
nim-grp()  \mmember{}  AbDGrp
Date html generated:
2018_05_21-PM-09_15_43
Last ObjectModification:
2018_05_19-PM-05_15_05
Theory : general
Home
Index