Nuprl Lemma : nim-grp_wf

nim-grp() ∈ AbDGrp


Proof




Definitions occuring in Statement :  nim-grp: nim-grp() member: t ∈ T abdgrp: AbDGrp
Definitions unfolded in proof :  member: t ∈ T abdgrp: AbDGrp abgrp: AbGrp grp: Group{i} mon: Mon nim-grp: nim-grp() grp_sig: GrpSig uall: [x:A]. B[x] nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: monoid_p: IsMonoid(T;op;id) grp_car: |g| pi1: fst(t) grp_op: * pi2: snd(t) grp_id: e ident: Ident(T;op;id) assoc: Assoc(T;op) infix_ap: y all: x:A. B[x] top: Top cand: c∧ B ge: i ≥  subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q guard: {T} uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] inverse: Inverse(T;op;id;inv) grp_inv: ~ comm: Comm(T;op) eqfun_p: IsEqFun(T;eq) grp_eq: =b uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  nat_wf eq_int_wf le_int_wf nim-sum_wf false_wf le_wf bool_wf nim_sum0_lemma nat_properties decidable__le full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf nim-sum-assoc nim-sum-0 monoid_p_wf grp_car_wf grp_op_wf grp_id_wf nim-sum-same inverse_wf grp_inv_wf nim-sum-com comm_wf assert_of_eq_int assert_wf decidable__equal_int intformeq_wf int_formula_prop_eq_lemma assert_witness equal_wf eqfun_p_wf grp_eq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_set_memberEquality dependent_pairEquality cut introduction extract_by_obid hypothesis lambdaEquality sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesisEquality natural_numberEquality sqequalRule independent_pairFormation lambdaFormation functionEquality productEquality cumulativity dependent_functionElimination isect_memberEquality voidElimination voidEquality isect_memberFormation applyEquality unionElimination equalityTransitivity equalitySymmetry applyLambdaEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality intEquality axiomEquality productElimination independent_pairEquality

Latex:
nim-grp()  \mmember{}  AbDGrp



Date html generated: 2018_05_21-PM-09_15_43
Last ObjectModification: 2018_05_19-PM-05_15_05

Theory : general


Home Index