Nuprl Lemma : nim-sum-assoc

[x,y,z:ℕ].  (nim-sum(x;nim-sum(y;z)) nim-sum(nim-sum(x;y);z) ∈ ℤ)


Proof




Definitions occuring in Statement :  nim-sum: nim-sum(x;y) nat: uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) int_nzero: -o true: True nequal: a ≠ b ∈  nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf nat_wf int_seg_wf int_seg_properties decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma decidable__equal_int subtype_base_sq set_subtype_base int_subtype_base intformeq_wf int_formula_prop_eq_lemma decidable__lt lelt_wf subtype_rel_self le_wf nim_sum0_lemma nim-sum_wf itermAdd_wf int_term_value_add_lemma div_rem_sum equal-wf-base true_wf nequal_wf rem_bounds_1 add-is-int-iff multiply-is-int-iff itermMultiply_wf int_term_value_mul_lemma false_wf nim-sum-rec equal_wf divide_wf iff_weakening_equal nim-sum-div2 nim-sum-rem2 int_seg_cases int_seg_subtype
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation axiomEquality because_Cache productElimination unionElimination applyEquality instantiate equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberEquality hypothesis_subsumption cumulativity addEquality addLevel baseClosed imageMemberEquality divideEquality imageElimination pointwiseFunctionality promote_hyp baseApply closedConclusion multiplyEquality remainderEquality

Latex:
\mforall{}[x,y,z:\mBbbN{}].    (nim-sum(x;nim-sum(y;z))  =  nim-sum(nim-sum(x;y);z))



Date html generated: 2018_05_21-PM-09_11_45
Last ObjectModification: 2018_05_19-PM-05_14_26

Theory : general


Home Index