Nuprl Lemma : nim-sum-div2

[x,y:ℕ].  (nim-sum(x;y) ÷ nim-sum(x ÷ 2;y ÷ 2))


Proof




Definitions occuring in Statement :  nim-sum: nim-sum(x;y) nat: uall: [x:A]. B[x] divide: n ÷ m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) divide: n ÷ m nim-sum: nim-sum(x;y) remainder: rem m int_nzero: -o true: True nequal: a ≠ b ∈  bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b nat_plus: + less_than: a < b squash: T has-value: (a)↓ less_than': less_than'(a;b)
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than int_seg_properties int_seg_wf subtract-1-ge-0 decidable__equal_int subtract_wf subtype_base_sq set_subtype_base int_subtype_base intformnot_wf intformeq_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma decidable__le decidable__lt istype-le subtype_rel_self divide_wfa nequal_wf eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int div_rem_sum rem_bounds_1 add-is-int-iff multiply-is-int-iff itermAdd_wf itermMultiply_wf int_term_value_add_lemma int_term_value_mul_lemma false_wf divide_wf value-type-has-value int-value-type remainder_wfa nat_wf set-value-type le_wf nim-sum_wf has-value_wf_base is-exception_wf div-cancel3 istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType axiomSqEquality isectIsTypeImplies inhabitedIsType functionIsTypeImplies productElimination because_Cache unionElimination applyEquality instantiate equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberEquality_alt productIsType promote_hyp hypothesis_subsumption cumulativity intEquality int_eqReduceFalseSq callbyvalueReduce sqleReflexivity equalityIstype baseClosed sqequalBase equalityElimination int_eqReduceTrueSq imageElimination pointwiseFunctionality baseApply closedConclusion imageMemberEquality divergentSqle addEquality

Latex:
\mforall{}[x,y:\mBbbN{}].    (nim-sum(x;y)  \mdiv{}  2  \msim{}  nim-sum(x  \mdiv{}  2;y  \mdiv{}  2))



Date html generated: 2020_05_20-AM-08_21_02
Last ObjectModification: 2019_11_27-PM-04_29_53

Theory : general


Home Index