Nuprl Lemma : remove_leading_property2

[T:Type]. ∀[L:T List]. ∀[P:T ⟶ 𝔹].  ¬↑P[hd(remove_leading(x.P[x];L))] supposing ¬↑null(remove_leading(x.P[x];L))


Proof




Definitions occuring in Statement :  remove_leading: remove_leading(a.P[a];L) null: null(as) hd: hd(l) list: List assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] not: ¬A function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a not: ¬A implies:  Q false: False member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B top: Top prop: all: x:A. B[x] or: P ∨ Q assert: b ifthenelse: if then else fi  btrue: tt true: True cons: [a b] bfalse: ff guard: {T} nat: le: A ≤ B and: P ∧ Q decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m less_than': less_than'(a;b) listp: List+
Lemmas referenced :  remove_leading_wf set_wf list_wf not_wf assert_wf null_wf3 subtype_rel_list top_wf hd_wf listp_properties list-cases length_of_nil_lemma null_nil_lemma product_subtype_list length_of_cons_lemma null_cons_lemma length_wf_nat nat_wf decidable__lt false_wf not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel equal_wf less_than_wf length_wf subtype_rel_set bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality applyEquality hypothesis cumulativity functionEquality independent_isectElimination isect_memberEquality voidElimination voidEquality because_Cache functionExtensionality dependent_functionElimination unionElimination independent_functionElimination natural_numberEquality promote_hyp hypothesis_subsumption productElimination setElimination rename addEquality independent_pairFormation intEquality minusEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].
    \mneg{}\muparrow{}P[hd(remove\_leading(x.P[x];L))]  supposing  \mneg{}\muparrow{}null(remove\_leading(x.P[x];L))



Date html generated: 2019_10_15-AM-11_08_45
Last ObjectModification: 2018_08_25-PM-00_07_18

Theory : general


Home Index