Nuprl Lemma : remove_leading_property2
∀[T:Type]. ∀[L:T List]. ∀[P:T ⟶ 𝔹].  ¬↑P[hd(remove_leading(x.P[x];L))] supposing ¬↑null(remove_leading(x.P[x];L))
Proof
Definitions occuring in Statement : 
remove_leading: remove_leading(a.P[a];L), 
null: null(as), 
hd: hd(l), 
list: T List, 
assert: ↑b, 
bool: 𝔹, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
not: ¬A, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
top: Top, 
prop: ℙ, 
all: ∀x:A. B[x], 
or: P ∨ Q, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
true: True, 
cons: [a / b], 
bfalse: ff, 
guard: {T}, 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
decidable: Dec(P), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
subtract: n - m, 
less_than': less_than'(a;b), 
listp: A List+
Lemmas referenced : 
remove_leading_wf, 
set_wf, 
list_wf, 
not_wf, 
assert_wf, 
null_wf3, 
subtype_rel_list, 
top_wf, 
hd_wf, 
listp_properties, 
list-cases, 
length_of_nil_lemma, 
null_nil_lemma, 
product_subtype_list, 
length_of_cons_lemma, 
null_cons_lemma, 
length_wf_nat, 
nat_wf, 
decidable__lt, 
false_wf, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
equal_wf, 
less_than_wf, 
length_wf, 
subtype_rel_set, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesis, 
cumulativity, 
functionEquality, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
functionExtensionality, 
dependent_functionElimination, 
unionElimination, 
independent_functionElimination, 
natural_numberEquality, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
setElimination, 
rename, 
addEquality, 
independent_pairFormation, 
intEquality, 
minusEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].
    \mneg{}\muparrow{}P[hd(remove\_leading(x.P[x];L))]  supposing  \mneg{}\muparrow{}null(remove\_leading(x.P[x];L))
Date html generated:
2019_10_15-AM-11_08_45
Last ObjectModification:
2018_08_25-PM-00_07_18
Theory : general
Home
Index