Nuprl Lemma : strict-sorted

[T:Type]. ∀[as:T List]. uiff(sorted(as) ∧ no_repeats(T;as);∀[i:ℕ||as||]. ∀[j:ℕi].  as[j] < as[i]) supposing T ⊆r ℤ


Proof




Definitions occuring in Statement :  no_repeats: no_repeats(T;l) sorted: sorted(L) select: L[n] length: ||as|| list: List int_seg: {i..j-} less_than: a < b uiff: uiff(P;Q) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] and: P ∧ Q natural_number: $n int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q int_seg: {i..j-} guard: {T} lelt: i ≤ j < k all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: less_than: a < b squash: T subtype_rel: A ⊆B sorted: sorted(L) le: A ≤ B so_lambda: λ2x.t[x] so_apply: x[s] no_repeats: no_repeats(T;l) less_than': less_than'(a;b) nat: ge: i ≥  sq_type: SQType(T) label: ...$L... t
Lemmas referenced :  int_seg_wf member-less_than select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt length_wf intformless_wf int_formula_prop_less_lemma sorted_wf no_repeats_wf less_than'_wf no_repeats_witness uall_wf less_than_wf list_wf subtype_rel_wf int_seg_subtype_nat false_wf nat_properties intformeq_wf int_formula_prop_eq_lemma equal_wf nat_wf subtype_base_sq int_subtype_base not_wf lelt_wf less_than_transitivity1 le_weakening less_than_irreflexivity decidable__equal_int le_wf equal-wf-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalHypSubstitution productElimination thin hypothesis extract_by_obid isectElimination natural_numberEquality setElimination rename hypothesisEquality sqequalRule isect_memberEquality because_Cache independent_isectElimination dependent_functionElimination unionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality voidElimination voidEquality computeAll cumulativity imageElimination applyEquality productEquality independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry independent_functionElimination universeEquality lambdaFormation applyLambdaEquality instantiate dependent_set_memberEquality addLevel levelHypothesis

Latex:
\mforall{}[T:Type]
    \mforall{}[as:T  List].  uiff(sorted(as)  \mwedge{}  no\_repeats(T;as);\mforall{}[i:\mBbbN{}||as||].  \mforall{}[j:\mBbbN{}i].    as[j]  <  as[i]) 
    supposing  T  \msubseteq{}r  \mBbbZ{}



Date html generated: 2018_05_21-PM-06_48_07
Last ObjectModification: 2017_07_26-PM-04_56_38

Theory : general


Home Index