Nuprl Lemma : triple-cross-product-zero
∀r:CRng. ∀a,p,q:ℕ3 ⟶ |r|.  (((p . a) = 0 ∈ |r|) 
⇒ ((q . a) = 0 ∈ |r|) 
⇒ ((a x (p x q)) = 0 ∈ (ℕ3 ⟶ |r|)))
Proof
Definitions occuring in Statement : 
scalar-product: (a . b)
, 
cross-product: (a x b)
, 
zero-vector: 0
, 
int_seg: {i..j-}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
, 
crng: CRng
, 
rng_zero: 0
, 
rng_car: |r|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
int_seg: {i..j-}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
guard: {T}
, 
zero-vector: 0
, 
cross-product: (a x b)
, 
select: L[n]
, 
cons: [a / b]
, 
subtract: n - m
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
prop: ℙ
, 
lelt: i ≤ j < k
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
crng: CRng
, 
rng: Rng
, 
nat: ℕ
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
infix_ap: x f y
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
int_seg_properties, 
int_seg_subtype, 
false_wf, 
int_seg_cases, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
int_seg_wf, 
equal_wf, 
rng_car_wf, 
scalar-product_wf, 
le_wf, 
rng_zero_wf, 
crng_wf, 
rng_plus_wf, 
lelt_wf, 
infix_ap_wf, 
rng_times_wf, 
rng_minus_wf, 
squash_wf, 
true_wf, 
rng_times_over_plus, 
rng_times_over_minus, 
subtype_rel_self, 
rng_minus_over_plus, 
rng_minus_minus, 
rng_plus_assoc, 
iff_weakening_equal, 
rng_plus_ac_1, 
rng_plus_comm, 
intformnot_wf, 
intformeq_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
rng_times_zero, 
rng_minus_zero, 
rng_plus_zero, 
scalar-product-3, 
crng_times_comm, 
crng_times_ac_1, 
rng_plus_inv_assoc
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
functionExtensionality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
unionElimination, 
instantiate, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
because_Cache, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
hypothesis_subsumption, 
addEquality, 
independent_pairFormation, 
productElimination, 
approximateComputation, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_set_memberEquality, 
applyEquality, 
functionEquality, 
equalityUniverse, 
levelHypothesis, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
universeEquality
Latex:
\mforall{}r:CRng.  \mforall{}a,p,q:\mBbbN{}3  {}\mrightarrow{}  |r|.    (((p  .  a)  =  0)  {}\mRightarrow{}  ((q  .  a)  =  0)  {}\mRightarrow{}  ((a  x  (p  x  q))  =  0))
Date html generated:
2018_05_21-PM-09_44_17
Last ObjectModification:
2018_05_19-PM-04_35_16
Theory : matrices
Home
Index