Nuprl Lemma : triple-cross-product-zero

r:CRng. ∀a,p,q:ℕ3 ⟶ |r|.  (((p a) 0 ∈ |r|)  ((q a) 0 ∈ |r|)  ((a (p q)) 0 ∈ (ℕ3 ⟶ |r|)))


Proof




Definitions occuring in Statement :  scalar-product: (a b) cross-product: (a b) zero-vector: 0 int_seg: {i..j-} all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T crng: CRng rng_zero: 0 rng_car: |r|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T int_seg: {i..j-} decidable: Dec(P) or: P ∨ Q uall: [x:A]. B[x] uimplies: supposing a sq_type: SQType(T) guard: {T} zero-vector: 0 cross-product: (a b) select: L[n] cons: [a b] subtract: m and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A prop: lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top crng: CRng rng: Rng nat: less_than: a < b squash: T true: True infix_ap: y subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  decidable__equal_int subtype_base_sq int_subtype_base int_seg_properties int_seg_subtype false_wf int_seg_cases full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf int_seg_wf equal_wf rng_car_wf scalar-product_wf le_wf rng_zero_wf crng_wf rng_plus_wf lelt_wf infix_ap_wf rng_times_wf rng_minus_wf squash_wf true_wf rng_times_over_plus rng_times_over_minus subtype_rel_self rng_minus_over_plus rng_minus_minus rng_plus_assoc iff_weakening_equal rng_plus_ac_1 rng_plus_comm intformnot_wf intformeq_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma rng_times_zero rng_minus_zero rng_plus_zero scalar-product-3 crng_times_comm crng_times_ac_1 rng_plus_inv_assoc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut functionExtensionality introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis natural_numberEquality unionElimination instantiate isectElimination cumulativity intEquality independent_isectElimination because_Cache independent_functionElimination equalityTransitivity equalitySymmetry sqequalRule hypothesis_subsumption addEquality independent_pairFormation productElimination approximateComputation dependent_pairFormation lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality dependent_set_memberEquality applyEquality functionEquality equalityUniverse levelHypothesis imageMemberEquality baseClosed imageElimination universeEquality

Latex:
\mforall{}r:CRng.  \mforall{}a,p,q:\mBbbN{}3  {}\mrightarrow{}  |r|.    (((p  .  a)  =  0)  {}\mRightarrow{}  ((q  .  a)  =  0)  {}\mRightarrow{}  ((a  x  (p  x  q))  =  0))



Date html generated: 2018_05_21-PM-09_44_17
Last ObjectModification: 2018_05_19-PM-04_35_16

Theory : matrices


Home Index