Nuprl Lemma : fps-elim-x-atom

[X:Type]. ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[x,y:X].
  (atom(y)(x:=0) if eq then else atom(y) fi  ∈ PowerSeries(X;r))


Proof




Definitions occuring in Statement :  fps-elim-x: f(x:=0) fps-atom: atom(x) fps-zero: 0 power-series: PowerSeries(X;r) deq: EqDecider(T) ifthenelse: if then else fi  uall: [x:A]. B[x] apply: a universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T deq: EqDecider(T) uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] fps-atom: atom(x) fps-zero: 0 fps-coeff: f[b] fps-elim-x: f(x:=0) fps-single: <c> fps-elim: fps-elim(x) implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  eqof: eqof(d) bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A crng: CRng rng: Rng rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  fps-ext fps-elim-x_wf fps-atom_wf ifthenelse_wf power-series_wf fps-zero_wf bag-deq-member_wf bool_wf eqtt_to_assert assert-bag-deq-member safe-assert-deq eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot bag-eq_wf single-bag_wf assert-bag-eq bag_wf rng_zero_wf bag-member_wf rng_one_wf crng_wf deq_wf bag-member-single not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality cumulativity hypothesis applyEquality setElimination rename productElimination independent_isectElimination lambdaFormation sqequalRule unionElimination equalityElimination equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp dependent_functionElimination instantiate independent_functionElimination voidElimination isect_memberEquality axiomEquality universeEquality hyp_replacement applyLambdaEquality

Latex:
\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[x,y:X].
    (atom(y)(x:=0)  =  if  eq  x  y  then  0  else  atom(y)  fi  )



Date html generated: 2018_05_21-PM-09_59_27
Last ObjectModification: 2017_07_26-PM-06_33_52

Theory : power!series


Home Index