Nuprl Lemma : fps-restrict-empty

[X:Type]. ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f:PowerSeries(X;r)].
  (fps-restrict(eq;r;f;{}) (f[{}])*1 ∈ PowerSeries(X;r))


Proof




Definitions occuring in Statement :  fps-restrict: fps-restrict(eq;r;f;d) fps-scalar-mul: (c)*f fps-one: 1 fps-coeff: f[b] power-series: PowerSeries(X;r) empty-bag: {} deq: EqDecider(T) uall: [x:A]. B[x] universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] fps-one: 1 fps-coeff: f[b] fps-scalar-mul: (c)*f fps-restrict: fps-restrict(eq;r;f;d) implies:  Q bool: 𝔹 unit: Unit it: btrue: tt iff: ⇐⇒ Q ifthenelse: if then else fi  squash: T prop: crng: CRng rng: Rng power-series: PowerSeries(X;r) true: True subtype_rel: A ⊆B guard: {T} rev_implies:  Q bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A
Lemmas referenced :  fps-ext fps-restrict_wf empty-bag_wf fps-scalar-mul_wf fps-coeff_wf fps-one_wf deq-sub-bag_wf bool_wf eqtt_to_assert assert-deq-sub-bag bag-null_wf assert-bag-null sub-bag-empty equal_wf squash_wf true_wf rng_car_wf rng_times_one iff_weakening_equal eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot equal-wf-T-base bag_wf sub-bag_wf rng_times_zero power-series_wf crng_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality cumulativity hypothesis productElimination independent_isectElimination lambdaFormation sqequalRule unionElimination equalityElimination equalityTransitivity equalitySymmetry because_Cache dependent_functionElimination independent_functionElimination applyEquality lambdaEquality imageElimination setElimination rename natural_numberEquality imageMemberEquality baseClosed universeEquality dependent_pairFormation promote_hyp instantiate voidElimination isect_memberEquality axiomEquality

Latex:
\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[f:PowerSeries(X;r)].
    (fps-restrict(eq;r;f;\{\})  =  (f[\{\}])*1)



Date html generated: 2018_05_21-PM-10_10_40
Last ObjectModification: 2017_07_26-PM-06_34_26

Theory : power!series


Home Index