Nuprl Lemma : member-rat-cube-complex-inhabited
∀[k:ℕ]. ∀[c:ℚCube(k)].  ↑Inhabited(c) supposing ∃n:ℕ. ∃K:n-dim-complex. (c ∈ K)
Proof
Definitions occuring in Statement : 
rational-cube-complex: n-dim-complex
, 
inhabited-rat-cube: Inhabited(c)
, 
rational-cube: ℚCube(k)
, 
l_member: (x ∈ l)
, 
nat: ℕ
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
exists: ∃x:A. B[x]
, 
rational-cube-complex: n-dim-complex
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
so_apply: x[s]
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
rev_implies: P 
⇐ Q
, 
rat-cube-dimension: dim(c)
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bfalse: ff
, 
ge: i ≥ j 
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
Lemmas referenced : 
sq_stable__assert, 
inhabited-rat-cube_wf, 
l_all_iff, 
equal-wf-base, 
rat-cube-dimension_wf, 
set_subtype_base, 
lelt_wf, 
istype-int, 
int_subtype_base, 
le_wf, 
l_member_wf, 
rational-cube_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
subtype_rel_self, 
iff_weakening_equal, 
bool_cases, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
eqff_to_assert, 
assert_of_bnot, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermConstant_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_eq_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
assert_witness, 
rational-cube-complex_wf, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
setElimination, 
rename, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
because_Cache, 
dependent_functionElimination, 
sqequalRule, 
lambdaEquality_alt, 
intEquality, 
applyEquality, 
minusEquality, 
natural_numberEquality, 
addEquality, 
independent_isectElimination, 
setIsType, 
inhabitedIsType, 
universeIsType, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
unionElimination, 
cumulativity, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
productIsType, 
isectIsTypeImplies
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c:\mBbbQ{}Cube(k)].    \muparrow{}Inhabited(c)  supposing  \mexists{}n:\mBbbN{}.  \mexists{}K:n-dim-complex.  (c  \mmember{}  K)
Date html generated:
2020_05_20-AM-09_21_39
Last ObjectModification:
2019_11_14-PM-02_46_39
Theory : rationals
Home
Index