Nuprl Lemma : member-rat-cube-complex-inhabited

[k:ℕ]. ∀[c:ℚCube(k)].  ↑Inhabited(c) supposing ∃n:ℕ. ∃K:n-dim-complex. (c ∈ K)


Proof




Definitions occuring in Statement :  rational-cube-complex: n-dim-complex inhabited-rat-cube: Inhabited(c) rational-cube: Cube(k) l_member: (x ∈ l) nat: assert: b uimplies: supposing a uall: [x:A]. B[x] exists: x:A. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a exists: x:A. B[x] rational-cube-complex: n-dim-complex sq_stable: SqStable(P) implies:  Q and: P ∧ Q all: x:A. B[x] so_lambda: λ2x.t[x] subtype_rel: A ⊆B int_seg: {i..j-} nat: so_apply: x[s] prop: iff: ⇐⇒ Q squash: T true: True guard: {T} rev_implies:  Q rat-cube-dimension: dim(c) or: P ∨ Q sq_type: SQType(T) uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt bfalse: ff ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top
Lemmas referenced :  sq_stable__assert inhabited-rat-cube_wf l_all_iff equal-wf-base rat-cube-dimension_wf set_subtype_base lelt_wf istype-int int_subtype_base le_wf l_member_wf rational-cube_wf equal_wf squash_wf true_wf istype-universe subtype_rel_self iff_weakening_equal bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert eqff_to_assert assert_of_bnot nat_properties full-omega-unsat intformand_wf intformeq_wf itermConstant_wf itermVar_wf intformle_wf int_formula_prop_and_lemma istype-void int_formula_prop_eq_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf assert_witness rational-cube-complex_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution productElimination thin setElimination rename extract_by_obid isectElimination hypothesisEquality hypothesis independent_functionElimination because_Cache dependent_functionElimination sqequalRule lambdaEquality_alt intEquality applyEquality minusEquality natural_numberEquality addEquality independent_isectElimination setIsType inhabitedIsType universeIsType imageElimination equalityTransitivity equalitySymmetry instantiate universeEquality imageMemberEquality baseClosed unionElimination cumulativity approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation productIsType isectIsTypeImplies

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c:\mBbbQ{}Cube(k)].    \muparrow{}Inhabited(c)  supposing  \mexists{}n:\mBbbN{}.  \mexists{}K:n-dim-complex.  (c  \mmember{}  K)



Date html generated: 2020_05_20-AM-09_21_39
Last ObjectModification: 2019_11_14-PM-02_46_39

Theory : rationals


Home Index