Nuprl Lemma : qexp-convex3
∀a,b:ℚ.  ((((0 ≤ a) ∧ (0 ≤ b)) ∨ ((a ≤ 0) ∧ (b ≤ 0))) 
⇒ (∀n:ℕ+. (|a - b| ↑ n ≤ |a ↑ n - b ↑ n|)))
Proof
Definitions occuring in Statement : 
qexp: r ↑ n
, 
qabs: |r|
, 
qle: r ≤ s
, 
qsub: r - s
, 
rationals: ℚ
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
cand: A c∧ B
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
qless: r < s
, 
grp_lt: a < b
, 
set_lt: a <p b
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
set_blt: a <b b
, 
band: p ∧b q
, 
infix_ap: x f y
, 
set_le: ≤b
, 
pi2: snd(t)
, 
oset_of_ocmon: g↓oset
, 
dset_of_mon: g↓set
, 
grp_le: ≤b
, 
pi1: fst(t)
, 
qadd_grp: <ℚ+>
, 
q_le: q_le(r;s)
, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t)
, 
bor: p ∨bq
, 
qpositive: qpositive(r)
, 
qsub: r - s
, 
qadd: r + s
, 
qmul: r * s
, 
btrue: tt
, 
lt_int: i <z j
, 
bnot: ¬bb
, 
bfalse: ff
, 
qeq: qeq(r;s)
, 
eq_int: (i =z j)
, 
true: True
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
prop: ℙ
, 
squash: ↓T
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
nat_plus: ℕ+
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
exists: ∃x:A. B[x]
, 
sq_type: SQType(T)
, 
false: False
Lemmas referenced : 
qexp-convex2, 
qmul_wf, 
qmul_reverses_qle, 
qle_wf, 
nat_plus_wf, 
or_wf, 
int-subtype-rationals, 
rationals_wf, 
squash_wf, 
true_wf, 
qmul_zero_qrng, 
qinv_inv_q, 
iff_weakening_equal, 
qexp_wf, 
nat_wf, 
equal_wf, 
qabs-difference-symmetry, 
qabs_wf, 
qsub_wf, 
nat_plus_subtype_nat, 
qadd_wf, 
qadd_comm_q, 
isEven_wf, 
bool_wf, 
eqtt_to_assert, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
qabs-qminus, 
qexp-qminus, 
qmul_over_plus_qrng
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
productElimination, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
independent_pairFormation, 
isectElimination, 
minusEquality, 
natural_numberEquality, 
applyEquality, 
because_Cache, 
sqequalRule, 
independent_isectElimination, 
hyp_replacement, 
equalitySymmetry, 
lambdaEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
productEquality, 
equalityTransitivity, 
universeEquality, 
setElimination, 
rename, 
equalityElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
voidElimination
Latex:
\mforall{}a,b:\mBbbQ{}.    ((((0  \mleq{}  a)  \mwedge{}  (0  \mleq{}  b))  \mvee{}  ((a  \mleq{}  0)  \mwedge{}  (b  \mleq{}  0)))  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}\msupplus{}.  (|a  -  b|  \muparrow{}  n  \mleq{}  |a  \muparrow{}  n  -  b  \muparrow{}  n|)))
Date html generated:
2018_05_22-AM-00_01_45
Last ObjectModification:
2017_07_26-PM-06_50_23
Theory : rationals
Home
Index