Nuprl Lemma : qexp-qminus

n:ℕ. ∀a:ℚ.  (-(a) ↑ if isEven(n) then a ↑ else -(a ↑ n) fi  ∈ ℚ)


Proof




Definitions occuring in Statement :  qexp: r ↑ n qmul: s rationals: isEven: isEven(n) nat: ifthenelse: if then else fi  all: x:A. B[x] minus: -n natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B true: True squash: T assert: b ifthenelse: if then else fi  isEven: isEven(n) eq_int: (i =z j) modulus: mod n btrue: tt guard: {T} iff: ⇐⇒ Q rev_implies:  Q nat_plus: + bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) bnot: ¬bb
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf rationals_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf qmul_wf isEven_wf equal_wf ite_rw_true iff_weakening_equal bool_wf eqtt_to_assert qexp_wf le_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot int-subtype-rationals even-implies qmul_assoc qmul_ac_1_qrng qinv_inv_q odd-or-even assert_of_bor isOdd_wf odd-implies exp_zero_q ifthenelse_wf squash_wf true_wf exp_unroll_q qmul_over_minus_qrng
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination axiomEquality unionElimination because_Cache minusEquality applyEquality imageElimination imageMemberEquality baseClosed equalityTransitivity equalitySymmetry productElimination dependent_set_memberEquality equalityElimination promote_hyp instantiate cumulativity universeEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a:\mBbbQ{}.    (-(a)  \muparrow{}  n  =  if  isEven(n)  then  a  \muparrow{}  n  else  -(a  \muparrow{}  n)  fi  )



Date html generated: 2018_05_22-AM-00_01_39
Last ObjectModification: 2017_07_26-PM-06_50_18

Theory : rationals


Home Index