Nuprl Lemma : qless-witness
∀[a,b:ℚ].  ⋅ ∈ a < b supposing a < b
Proof
Definitions occuring in Statement : 
qless: r < s
, 
rationals: ℚ
, 
it: ⋅
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
prop: ℙ
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
decidable__qless, 
bfalse: ff
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
iff: P 
⇐⇒ Q
, 
ifthenelse: if b then t else f fi 
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
sq_type: SQType(T)
, 
btrue: tt
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
assert: ↑b
, 
isl: isl(x)
, 
true: True
, 
outl: outl(x)
, 
false: False
, 
bnot: ¬bb
, 
outr: outr(x)
Lemmas referenced : 
rationals_wf, 
qless_wf, 
decidable__qless, 
subtype_rel_self, 
all_wf, 
decidable_wf, 
assert_of_bnot, 
iff_weakening_uiff, 
iff_transitivity, 
eqff_to_assert, 
assert-qpositive, 
eqtt_to_assert, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases, 
qpositive_wf, 
qsub_wf, 
assert_wf, 
bnot_wf, 
not_wf, 
int-subtype-rationals, 
isl_wf
Rules used in proof : 
inhabitedIsType, 
because_Cache, 
isect_memberEquality_alt, 
hypothesisEquality, 
thin, 
isectElimination, 
extract_by_obid, 
universeIsType, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
sqequalRule, 
hypothesis, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
applyEquality, 
instantiate, 
functionEquality, 
lambdaEquality, 
impliesFunctionality, 
lambdaFormation, 
independent_pairFormation, 
productElimination, 
independent_functionElimination, 
independent_isectElimination, 
cumulativity, 
unionElimination, 
dependent_functionElimination, 
natural_numberEquality, 
dependent_set_memberEquality, 
applyLambdaEquality, 
setElimination, 
rename, 
voidElimination
Latex:
\mforall{}[a,b:\mBbbQ{}].    \mcdot{}  \mmember{}  a  <  b  supposing  a  <  b
Date html generated:
2020_05_20-AM-09_15_52
Last ObjectModification:
2020_01_22-PM-05_16_17
Theory : rationals
Home
Index