Nuprl Lemma : qless-witness

[a,b:ℚ].  ⋅ ∈ a < supposing a < b


Proof




Definitions occuring in Statement :  qless: r < s rationals: it: uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  prop: uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] decidable__qless bfalse: ff rev_implies:  Q not: ¬A iff: ⇐⇒ Q ifthenelse: if then else fi  and: P ∧ Q uiff: uiff(P;Q) guard: {T} implies:  Q sq_type: SQType(T) btrue: tt decidable: Dec(P) or: P ∨ Q assert: b isl: isl(x) true: True outl: outl(x) false: False bnot: ¬bb outr: outr(x)
Lemmas referenced :  rationals_wf qless_wf decidable__qless subtype_rel_self all_wf decidable_wf assert_of_bnot iff_weakening_uiff iff_transitivity eqff_to_assert assert-qpositive eqtt_to_assert bool_subtype_base bool_wf subtype_base_sq bool_cases qpositive_wf qsub_wf assert_wf bnot_wf not_wf int-subtype-rationals isl_wf
Rules used in proof :  inhabitedIsType because_Cache isect_memberEquality_alt hypothesisEquality thin isectElimination extract_by_obid universeIsType equalitySymmetry equalityTransitivity axiomEquality sqequalRule hypothesis sqequalHypSubstitution cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution applyEquality instantiate functionEquality lambdaEquality impliesFunctionality lambdaFormation independent_pairFormation productElimination independent_functionElimination independent_isectElimination cumulativity unionElimination dependent_functionElimination natural_numberEquality dependent_set_memberEquality applyLambdaEquality setElimination rename voidElimination

Latex:
\mforall{}[a,b:\mBbbQ{}].    \mcdot{}  \mmember{}  a  <  b  supposing  a  <  b



Date html generated: 2020_05_20-AM-09_15_52
Last ObjectModification: 2020_01_22-PM-05_16_17

Theory : rationals


Home Index