Nuprl Lemma : qless-witness
∀[a,b:ℚ]. ⋅ ∈ a < b supposing a < b
Proof
Definitions occuring in Statement :
qless: r < s
,
rationals: ℚ
,
it: ⋅
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Definitions unfolded in proof :
prop: ℙ
,
uimplies: b supposing a
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
subtype_rel: A ⊆r B
,
all: ∀x:A. B[x]
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
decidable__qless,
bfalse: ff
,
rev_implies: P
⇐ Q
,
not: ¬A
,
iff: P
⇐⇒ Q
,
ifthenelse: if b then t else f fi
,
and: P ∧ Q
,
uiff: uiff(P;Q)
,
guard: {T}
,
implies: P
⇒ Q
,
sq_type: SQType(T)
,
btrue: tt
,
decidable: Dec(P)
,
or: P ∨ Q
,
assert: ↑b
,
isl: isl(x)
,
true: True
,
outl: outl(x)
,
false: False
,
bnot: ¬bb
,
outr: outr(x)
Lemmas referenced :
rationals_wf,
qless_wf,
decidable__qless,
subtype_rel_self,
all_wf,
decidable_wf,
assert_of_bnot,
iff_weakening_uiff,
iff_transitivity,
eqff_to_assert,
assert-qpositive,
eqtt_to_assert,
bool_subtype_base,
bool_wf,
subtype_base_sq,
bool_cases,
qpositive_wf,
qsub_wf,
assert_wf,
bnot_wf,
not_wf,
int-subtype-rationals,
isl_wf
Rules used in proof :
inhabitedIsType,
because_Cache,
isect_memberEquality_alt,
hypothesisEquality,
thin,
isectElimination,
extract_by_obid,
universeIsType,
equalitySymmetry,
equalityTransitivity,
axiomEquality,
sqequalRule,
hypothesis,
sqequalHypSubstitution,
cut,
introduction,
isect_memberFormation_alt,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution,
applyEquality,
instantiate,
functionEquality,
lambdaEquality,
impliesFunctionality,
lambdaFormation,
independent_pairFormation,
productElimination,
independent_functionElimination,
independent_isectElimination,
cumulativity,
unionElimination,
dependent_functionElimination,
natural_numberEquality,
dependent_set_memberEquality,
applyLambdaEquality,
setElimination,
rename,
voidElimination
Latex:
\mforall{}[a,b:\mBbbQ{}]. \mcdot{} \mmember{} a < b supposing a < b
Date html generated:
2020_05_20-AM-09_15_52
Last ObjectModification:
2020_01_22-PM-05_16_17
Theory : rationals
Home
Index