Nuprl Lemma : qsqrt-nonneg

[r:{r:ℚ0 ≤ r} ]. ∀[n:ℕ+].  (0 ≤ qsqrt(r;n))


Proof




Definitions occuring in Statement :  qsqrt: qsqrt(r;n) qle: r ≤ s rationals: nat_plus: + uall: [x:A]. B[x] set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T qsqrt: qsqrt(r;n) subtype_rel: A ⊆B all: x:A. B[x] so_lambda: λ2x.t[x] prop: and: P ∧ Q nat_plus: + so_apply: x[s] uimplies: supposing a int_nzero: -o implies:  Q nequal: a ≠ b ∈  not: ¬A false: False satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top sq_exists: x:A [B[x]] sq_stable: SqStable(P) squash: T
Lemmas referenced :  approximate-qsqrt-ext subtype_rel_self all_wf sq_exists_wf qless_wf qdiv_wf subtype_rel_set rationals_wf less_than_wf int-subtype-rationals int_nzero-rational subtype_rel_sets nequal_wf full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf equal-wf-base int_subtype_base qle_wf qabs_wf qsub_wf qmul_wf equal_wf qle_witness qsqrt_wf nat_plus_wf set_wf sq_stable_from_decidable decidable__qle
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality thin instantiate extract_by_obid hypothesis sqequalRule sqequalHypSubstitution isectElimination functionEquality because_Cache lambdaFormation setElimination rename lambdaEquality productEquality hypothesisEquality intEquality natural_numberEquality independent_isectElimination setEquality approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation baseClosed equalityTransitivity equalitySymmetry productElimination imageMemberEquality imageElimination

Latex:
\mforall{}[r:\{r:\mBbbQ{}|  0  \mleq{}  r\}  ].  \mforall{}[n:\mBbbN{}\msupplus{}].    (0  \mleq{}  qsqrt(r;n))



Date html generated: 2018_05_22-AM-00_30_23
Last ObjectModification: 2018_05_19-PM-04_09_47

Theory : rationals


Home Index