Nuprl Lemma : mk_applies_lambdas
∀[F,G:Top]. ∀[m:ℕ]. ∀[n:ℕm + 1].  (mk_applies(mk_lambdas(F;m);G;n) ~ mk_lambdas(F;m - n))
Proof
Definitions occuring in Statement : 
mk_applies: mk_applies(F;G;m)
, 
mk_lambdas: mk_lambdas(F;m)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than: a < b
, 
squash: ↓T
, 
nat: ℕ
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
less_than': less_than'(a;b)
, 
mk_applies: mk_applies(F;G;m)
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
mk_lambdas: mk_lambdas(F;m)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
int_seg_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
intformless_wf, 
itermAdd_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
int_seg_subtype_nat, 
istype-false, 
ge_wf, 
istype-less_than, 
primrec0_lemma, 
subtype_base_sq, 
int_subtype_base, 
decidable__equal_int, 
intformeq_wf, 
itermSubtract_wf, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
istype-le, 
subtract-1-ge-0, 
subtract_wf, 
int_seg_wf, 
istype-nat, 
istype-top, 
primrec-unroll, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
base_wf, 
subtype_rel_self, 
add-subtract-cancel, 
set_subtype_base, 
le_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
setElimination, 
rename, 
productElimination, 
hypothesis, 
imageElimination, 
hypothesisEquality, 
dependent_functionElimination, 
unionElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
universeIsType, 
applyEquality, 
addEquality, 
lambdaFormation_alt, 
inhabitedIsType, 
intWeakElimination, 
axiomSqEquality, 
functionIsTypeImplies, 
instantiate, 
cumulativity, 
intEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
equalityIstype, 
isectIsTypeImplies, 
equalityElimination, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed
Latex:
\mforall{}[F,G:Top].  \mforall{}[m:\mBbbN{}].  \mforall{}[n:\mBbbN{}m  +  1].    (mk\_applies(mk\_lambdas(F;m);G;n)  \msim{}  mk\_lambdas(F;m  -  n))
Date html generated:
2020_05_20-AM-07_49_09
Last ObjectModification:
2019_11_27-PM-04_15_48
Theory : untyped!computation
Home
Index