Nuprl Lemma : mk_applies_lambdas

[F,G:Top]. ∀[m:ℕ]. ∀[n:ℕ1].  (mk_applies(mk_lambdas(F;m);G;n) mk_lambdas(F;m n))


Proof




Definitions occuring in Statement :  mk_applies: mk_applies(F;G;m) mk_lambdas: mk_lambdas(F;m) int_seg: {i..j-} nat: uall: [x:A]. B[x] top: Top subtract: m add: m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b squash: T nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: subtype_rel: A ⊆B less_than': less_than'(a;b) mk_applies: mk_applies(F;G;m) sq_type: SQType(T) guard: {T} bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q mk_lambdas: mk_lambdas(F;m) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermVar_wf intformless_wf itermAdd_wf itermConstant_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf int_seg_subtype_nat istype-false ge_wf istype-less_than primrec0_lemma subtype_base_sq int_subtype_base decidable__equal_int intformeq_wf itermSubtract_wf int_formula_prop_eq_lemma int_term_value_subtract_lemma istype-le subtract-1-ge-0 subtract_wf int_seg_wf istype-nat istype-top primrec-unroll lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf base_wf subtype_rel_self add-subtract-cancel set_subtype_base le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule thin extract_by_obid sqequalHypSubstitution isectElimination setElimination rename productElimination hypothesis imageElimination hypothesisEquality dependent_functionElimination unionElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation universeIsType applyEquality addEquality lambdaFormation_alt inhabitedIsType intWeakElimination axiomSqEquality functionIsTypeImplies instantiate cumulativity intEquality because_Cache equalityTransitivity equalitySymmetry equalityIstype isectIsTypeImplies equalityElimination promote_hyp baseApply closedConclusion baseClosed

Latex:
\mforall{}[F,G:Top].  \mforall{}[m:\mBbbN{}].  \mforall{}[n:\mBbbN{}m  +  1].    (mk\_applies(mk\_lambdas(F;m);G;n)  \msim{}  mk\_lambdas(F;m  -  n))



Date html generated: 2020_05_20-AM-07_49_09
Last ObjectModification: 2019_11_27-PM-04_15_48

Theory : untyped!computation


Home Index