Nuprl Lemma : padic-ring_wf
∀[p:{2...}]. (padic-ring(p) ∈ CRng)
Proof
Definitions occuring in Statement : 
padic-ring: padic-ring(p), 
crng: CRng, 
int_upper: {i...}, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
crng: CRng, 
rng: Rng, 
p-adic-ring: ℤ(p), 
ring_p: IsRing(T;plus;zero;neg;times;one), 
rng_car: |r|, 
pi1: fst(t), 
rng_plus: +r, 
pi2: snd(t), 
rng_zero: 0, 
rng_minus: -r, 
rng_times: *, 
rng_one: 1, 
monoid_p: IsMonoid(T;op;id), 
group_p: IsGroup(T;op;id;inv), 
bilinear: BiLinear(T;pl;tm), 
ident: Ident(T;op;id), 
assoc: Assoc(T;op), 
inverse: Inverse(T;op;id;inv), 
infix_ap: x f y, 
comm: Comm(T;op), 
and: P ∧ Q, 
padic-ring: padic-ring(p), 
prop: ℙ, 
rng_sig: RngSig, 
int_upper: {i...}, 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
pa-mul: pa-mul(p;x;y), 
nat_plus: ℕ+, 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
pa-add: pa-add(p;x;y), 
cand: A c∧ B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
squash: ↓T, 
true: True, 
guard: {T}, 
basic-padic: basic-padic(p), 
bpa-add: bpa-add(p;x;y), 
bpa-equiv: bpa-equiv(p;x;y), 
nat: ℕ, 
ge: i ≥ j , 
has-value: (a)↓, 
top: Top, 
int_seg: {i..j-}, 
p-adics: p-adics(p), 
less_than': less_than'(a;b), 
le: A ≤ B, 
assert: ↑b, 
bnot: ¬bb, 
bfalse: ff, 
sq_type: SQType(T), 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
pa-int: k(p), 
subtract: n - m, 
pa-minus: pa-minus(p;x), 
bpa-minus: bpa-minus(p;x), 
bpa-mul: bpa-mul(p;x;y), 
lelt: i ≤ j < k, 
padic: padic(p), 
istype: istype(T), 
p-units: p-units(p)
Lemmas referenced : 
p-adic-ring_wf, 
crng_properties, 
rng_properties, 
ring_p_wf, 
rng_car_wf, 
rng_plus_wf, 
rng_zero_wf, 
rng_minus_wf, 
rng_times_wf, 
rng_one_wf, 
comm_wf, 
istype-int_upper, 
padic_wf, 
bfalse_wf, 
pa-add_wf, 
padic_subtype_basic-padic, 
pa-int_wf, 
pa-minus_wf, 
pa-mul_wf, 
it_wf, 
unit_wf2, 
bool_wf, 
bpa-norm-equiv, 
bpa-mul_wf, 
int_upper_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
istype-less_than, 
basic-padic_wf, 
bpa-add_wf, 
bpa-equiv-iff-norm2, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
bpa-equiv_inversion, 
pa-add_functionality, 
bpa-equiv_weakening, 
imax_ub, 
nat_properties, 
decidable__le, 
istype-le, 
imax_wf, 
value-type-has-value, 
int-value-type, 
fastexp_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
le_wf, 
subtype_rel_self, 
iff_weakening_equal, 
p-adics_wf, 
p-int_wf, 
exp_wf2, 
p-mul_wf, 
p-add_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
p-distrib, 
nat_plus_wf, 
p-mul-assoc, 
exp-fastexp, 
p-mul-int, 
exp_add, 
p-add-assoc, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
istype-nat, 
bpa-norm-padic, 
istype-void, 
eqmod_wf, 
nat_plus_properties, 
p-adic-property, 
int_term_value_mul_lemma, 
itermMultiply_wf, 
mul-one, 
exp0_lemma, 
set-value-type, 
nat_wf, 
assert_wf, 
iff_weakening_uiff, 
assert-bnot, 
bool_subtype_base, 
bool_cases_sqequal, 
eqff_to_assert, 
subtype_base_sq, 
assert_of_le_int, 
eqtt_to_assert, 
le_int_wf, 
set_subtype_base, 
int_subtype_base, 
imax_unfold, 
minus-one-mul, 
add-mul-special, 
zero-mul, 
add-zero, 
minus-zero, 
bpa-minus_wf, 
p-minus_wf, 
false_wf, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
less_than_wf, 
pa-mul_functionality, 
all_wf, 
nat_plus_subtype_nat, 
less-iff-le, 
condition-implies-le, 
minus-add, 
minus-one-mul-top, 
add-associates, 
int_seg_wf, 
int_seg_properties, 
p-1-mul, 
bpa-norm_wf_padic, 
p-mul-1, 
ifthenelse_wf, 
add_functionality_wrt_eq, 
eq_int_wf, 
assert_of_eq_int, 
neg_assert_of_eq_int
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
dependent_set_memberEquality_alt, 
productElimination, 
universeIsType, 
because_Cache, 
natural_numberEquality, 
dependent_pairEquality, 
lambdaEquality, 
applyEquality, 
inrEquality, 
functionEquality, 
unionEquality, 
productEquality, 
lambdaFormation_alt, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
voidElimination, 
inhabitedIsType, 
independent_pairEquality, 
axiomEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
hyp_replacement, 
imageElimination, 
instantiate, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
inlFormation_alt, 
inrFormation_alt, 
callbyvalueReduce, 
intEquality, 
productIsType, 
equalityIstype, 
addEquality, 
multiplyEquality, 
functionIsType, 
promote_hyp, 
cumulativity, 
equalityElimination, 
sqequalIntensionalEquality, 
isect_memberFormation, 
dependent_set_memberEquality, 
lambdaFormation, 
isect_memberEquality, 
voidEquality, 
dependent_pairFormation, 
minusEquality
Latex:
\mforall{}[p:\{2...\}].  (padic-ring(p)  \mmember{}  CRng)
Date html generated:
2020_05_19-PM-10_09_14
Last ObjectModification:
2020_01_08-PM-06_53_09
Theory : rings_1
Home
Index