Nuprl Lemma : padic-ring_wf

[p:{2...}]. (padic-ring(p) ∈ CRng)


Proof




Definitions occuring in Statement :  padic-ring: padic-ring(p) crng: CRng int_upper: {i...} uall: [x:A]. B[x] member: t ∈ T natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T crng: CRng rng: Rng p-adic-ring: (p) ring_p: IsRing(T;plus;zero;neg;times;one) rng_car: |r| pi1: fst(t) rng_plus: +r pi2: snd(t) rng_zero: 0 rng_minus: -r rng_times: * rng_one: 1 monoid_p: IsMonoid(T;op;id) group_p: IsGroup(T;op;id;inv) bilinear: BiLinear(T;pl;tm) ident: Ident(T;op;id) assoc: Assoc(T;op) inverse: Inverse(T;op;id;inv) infix_ap: y comm: Comm(T;op) and: P ∧ Q padic-ring: padic-ring(p) prop: rng_sig: RngSig int_upper: {i...} subtype_rel: A ⊆B all: x:A. B[x] pa-mul: pa-mul(p;x;y) nat_plus: + decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False pa-add: pa-add(p;x;y) cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q squash: T true: True guard: {T} basic-padic: basic-padic(p) bpa-add: bpa-add(p;x;y) bpa-equiv: bpa-equiv(p;x;y) nat: ge: i ≥  has-value: (a)↓ top: Top int_seg: {i..j-} p-adics: p-adics(p) less_than': less_than'(a;b) le: A ≤ B assert: b bnot: ¬bb bfalse: ff sq_type: SQType(T) ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 so_apply: x[s] so_lambda: λ2x.t[x] pa-int: k(p) subtract: m pa-minus: pa-minus(p;x) bpa-minus: bpa-minus(p;x) bpa-mul: bpa-mul(p;x;y) lelt: i ≤ j < k padic: padic(p) istype: istype(T) p-units: p-units(p)
Lemmas referenced :  p-adic-ring_wf crng_properties rng_properties ring_p_wf rng_car_wf rng_plus_wf rng_zero_wf rng_minus_wf rng_times_wf rng_one_wf comm_wf istype-int_upper padic_wf bfalse_wf pa-add_wf padic_subtype_basic-padic pa-int_wf pa-minus_wf pa-mul_wf it_wf unit_wf2 bool_wf bpa-norm-equiv bpa-mul_wf int_upper_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf intformle_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf istype-less_than basic-padic_wf bpa-add_wf bpa-equiv-iff-norm2 equal_wf squash_wf true_wf istype-universe bpa-equiv_inversion pa-add_functionality bpa-equiv_weakening imax_ub nat_properties decidable__le istype-le imax_wf value-type-has-value int-value-type fastexp_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma le_wf subtype_rel_self iff_weakening_equal p-adics_wf p-int_wf exp_wf2 p-mul_wf p-add_wf itermAdd_wf int_term_value_add_lemma p-distrib nat_plus_wf p-mul-assoc exp-fastexp p-mul-int exp_add p-add-assoc decidable__equal_int intformeq_wf int_formula_prop_eq_lemma istype-nat bpa-norm-padic istype-void eqmod_wf nat_plus_properties p-adic-property int_term_value_mul_lemma itermMultiply_wf mul-one exp0_lemma set-value-type nat_wf assert_wf iff_weakening_uiff assert-bnot bool_subtype_base bool_cases_sqequal eqff_to_assert subtype_base_sq assert_of_le_int eqtt_to_assert le_int_wf set_subtype_base int_subtype_base imax_unfold minus-one-mul add-mul-special zero-mul add-zero minus-zero bpa-minus_wf p-minus_wf false_wf not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel less_than_wf pa-mul_functionality all_wf nat_plus_subtype_nat less-iff-le condition-implies-le minus-add minus-one-mul-top add-associates int_seg_wf int_seg_properties p-1-mul bpa-norm_wf_padic p-mul-1 ifthenelse_wf add_functionality_wrt_eq eq_int_wf assert_of_eq_int neg_assert_of_eq_int
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality equalityTransitivity equalitySymmetry applyLambdaEquality setElimination rename sqequalRule dependent_set_memberEquality_alt productElimination universeIsType because_Cache natural_numberEquality dependent_pairEquality lambdaEquality applyEquality inrEquality functionEquality unionEquality productEquality lambdaFormation_alt dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  independent_pairFormation voidElimination inhabitedIsType independent_pairEquality axiomEquality isect_memberEquality_alt isectIsTypeImplies hyp_replacement imageElimination instantiate universeEquality imageMemberEquality baseClosed inlFormation_alt inrFormation_alt callbyvalueReduce intEquality productIsType equalityIstype addEquality multiplyEquality functionIsType promote_hyp cumulativity equalityElimination sqequalIntensionalEquality isect_memberFormation dependent_set_memberEquality lambdaFormation isect_memberEquality voidEquality dependent_pairFormation minusEquality

Latex:
\mforall{}[p:\{2...\}].  (padic-ring(p)  \mmember{}  CRng)



Date html generated: 2020_05_19-PM-10_09_14
Last ObjectModification: 2020_01_08-PM-06_53_09

Theory : rings_1


Home Index