Nuprl Lemma : padic-ring_wf
∀[p:{2...}]. (padic-ring(p) ∈ CRng)
Proof
Definitions occuring in Statement : 
padic-ring: padic-ring(p)
, 
crng: CRng
, 
int_upper: {i...}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
crng: CRng
, 
rng: Rng
, 
p-adic-ring: ℤ(p)
, 
ring_p: IsRing(T;plus;zero;neg;times;one)
, 
rng_car: |r|
, 
pi1: fst(t)
, 
rng_plus: +r
, 
pi2: snd(t)
, 
rng_zero: 0
, 
rng_minus: -r
, 
rng_times: *
, 
rng_one: 1
, 
monoid_p: IsMonoid(T;op;id)
, 
group_p: IsGroup(T;op;id;inv)
, 
bilinear: BiLinear(T;pl;tm)
, 
ident: Ident(T;op;id)
, 
assoc: Assoc(T;op)
, 
inverse: Inverse(T;op;id;inv)
, 
infix_ap: x f y
, 
comm: Comm(T;op)
, 
and: P ∧ Q
, 
padic-ring: padic-ring(p)
, 
prop: ℙ
, 
rng_sig: RngSig
, 
int_upper: {i...}
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
pa-mul: pa-mul(p;x;y)
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
pa-add: pa-add(p;x;y)
, 
cand: A c∧ B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
basic-padic: basic-padic(p)
, 
bpa-add: bpa-add(p;x;y)
, 
bpa-equiv: bpa-equiv(p;x;y)
, 
nat: ℕ
, 
ge: i ≥ j 
, 
has-value: (a)↓
, 
top: Top
, 
int_seg: {i..j-}
, 
p-adics: p-adics(p)
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
assert: ↑b
, 
bnot: ¬bb
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
pa-int: k(p)
, 
subtract: n - m
, 
pa-minus: pa-minus(p;x)
, 
bpa-minus: bpa-minus(p;x)
, 
bpa-mul: bpa-mul(p;x;y)
, 
lelt: i ≤ j < k
, 
padic: padic(p)
, 
istype: istype(T)
, 
p-units: p-units(p)
Lemmas referenced : 
p-adic-ring_wf, 
crng_properties, 
rng_properties, 
ring_p_wf, 
rng_car_wf, 
rng_plus_wf, 
rng_zero_wf, 
rng_minus_wf, 
rng_times_wf, 
rng_one_wf, 
comm_wf, 
istype-int_upper, 
padic_wf, 
bfalse_wf, 
pa-add_wf, 
padic_subtype_basic-padic, 
pa-int_wf, 
pa-minus_wf, 
pa-mul_wf, 
it_wf, 
unit_wf2, 
bool_wf, 
bpa-norm-equiv, 
bpa-mul_wf, 
int_upper_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
istype-less_than, 
basic-padic_wf, 
bpa-add_wf, 
bpa-equiv-iff-norm2, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
bpa-equiv_inversion, 
pa-add_functionality, 
bpa-equiv_weakening, 
imax_ub, 
nat_properties, 
decidable__le, 
istype-le, 
imax_wf, 
value-type-has-value, 
int-value-type, 
fastexp_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
le_wf, 
subtype_rel_self, 
iff_weakening_equal, 
p-adics_wf, 
p-int_wf, 
exp_wf2, 
p-mul_wf, 
p-add_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
p-distrib, 
nat_plus_wf, 
p-mul-assoc, 
exp-fastexp, 
p-mul-int, 
exp_add, 
p-add-assoc, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
istype-nat, 
bpa-norm-padic, 
istype-void, 
eqmod_wf, 
nat_plus_properties, 
p-adic-property, 
int_term_value_mul_lemma, 
itermMultiply_wf, 
mul-one, 
exp0_lemma, 
set-value-type, 
nat_wf, 
assert_wf, 
iff_weakening_uiff, 
assert-bnot, 
bool_subtype_base, 
bool_cases_sqequal, 
eqff_to_assert, 
subtype_base_sq, 
assert_of_le_int, 
eqtt_to_assert, 
le_int_wf, 
set_subtype_base, 
int_subtype_base, 
imax_unfold, 
minus-one-mul, 
add-mul-special, 
zero-mul, 
add-zero, 
minus-zero, 
bpa-minus_wf, 
p-minus_wf, 
false_wf, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
less_than_wf, 
pa-mul_functionality, 
all_wf, 
nat_plus_subtype_nat, 
less-iff-le, 
condition-implies-le, 
minus-add, 
minus-one-mul-top, 
add-associates, 
int_seg_wf, 
int_seg_properties, 
p-1-mul, 
bpa-norm_wf_padic, 
p-mul-1, 
ifthenelse_wf, 
add_functionality_wrt_eq, 
eq_int_wf, 
assert_of_eq_int, 
neg_assert_of_eq_int
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
dependent_set_memberEquality_alt, 
productElimination, 
universeIsType, 
because_Cache, 
natural_numberEquality, 
dependent_pairEquality, 
lambdaEquality, 
applyEquality, 
inrEquality, 
functionEquality, 
unionEquality, 
productEquality, 
lambdaFormation_alt, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
voidElimination, 
inhabitedIsType, 
independent_pairEquality, 
axiomEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
hyp_replacement, 
imageElimination, 
instantiate, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
inlFormation_alt, 
inrFormation_alt, 
callbyvalueReduce, 
intEquality, 
productIsType, 
equalityIstype, 
addEquality, 
multiplyEquality, 
functionIsType, 
promote_hyp, 
cumulativity, 
equalityElimination, 
sqequalIntensionalEquality, 
isect_memberFormation, 
dependent_set_memberEquality, 
lambdaFormation, 
isect_memberEquality, 
voidEquality, 
dependent_pairFormation, 
minusEquality
Latex:
\mforall{}[p:\{2...\}].  (padic-ring(p)  \mmember{}  CRng)
Date html generated:
2020_05_19-PM-10_09_14
Last ObjectModification:
2020_01_08-PM-06_53_09
Theory : rings_1
Home
Index