Nuprl Lemma : constrained-cubical-term-to-cubical-path-1
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[rho:Gamma(I+i)].
  ∀phi:𝔽(I)
    ∀[u:{I+i,s(phi) ⊢ _:(A)<rho> o iota}].
    ∀[v:{formal-cube(I) ⊢ _:((A)<rho> o cube+(I;i))[1(𝕀)][canonical-section(();𝔽;I;⋅;phi) |⟶ ((u)cube+(I;i))[1(𝕀)]]}].
      (v(1) ∈ cubical-path-1(Gamma;A;I;i;rho;phi;u))
Proof
Definitions occuring in Statement : 
cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u), 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}, 
context-subset: Gamma, phi, 
face-type: 𝔽, 
cube+: cube+(I;i), 
interval-1: 1(𝕀), 
interval-type: 𝕀, 
csm-id-adjoin: [u], 
cube-context-adjoin: X.A, 
csm-ap-term: (t)s, 
canonical-section: canonical-section(Gamma;A;I;rho;a), 
cubical-term-at: u(a), 
cubical-term: {X ⊢ _:A}, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
subset-iota: iota, 
cubical-subset: I,psi, 
face-presheaf: 𝔽, 
csm-comp: G o F, 
context-map: <rho>, 
trivial-cube-set: (), 
formal-cube: formal-cube(I), 
cube-set-restriction: f(s), 
I_cube: A(I), 
cubical_set: CubicalSet, 
nc-s: s, 
add-name: I+i, 
nh-id: 1, 
fset-member: a ∈ s, 
fset: fset(T), 
int-deq: IntDeq, 
nat: ℕ, 
it: ⋅, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
not: ¬A, 
member: t ∈ T, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
nat: ℕ, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
and: P ∧ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
squash: ↓T, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
canonical-section: canonical-section(Gamma;A;I;rho;a), 
cubical-term-at: u(a), 
lattice-point: Point(l), 
record-select: r.x, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
I_cube: A(I), 
functor-ob: ob(F), 
pi1: fst(t), 
face-presheaf: 𝔽, 
cube_set_map: A ⟶ B, 
psc_map: A ⟶ B, 
nat-trans: nat-trans(C;D;F;G), 
cat-ob: cat-ob(C), 
op-cat: op-cat(C), 
spreadn: spread4, 
cube-cat: CubeCat, 
fset: fset(T), 
quotient: x,y:A//B[x; y], 
cat-arrow: cat-arrow(C), 
pi2: snd(t), 
type-cat: TypeCat, 
names-hom: I ⟶ J, 
cat-comp: cat-comp(C), 
compose: f o g, 
formal-cube: formal-cube(I), 
subset-iota: iota, 
csm-comp: G o F, 
context-map: <rho>, 
cubical-type: {X ⊢ _}, 
interval-type: 𝕀, 
csm-ap-type: (AF)s, 
interval-0: 0(𝕀), 
csm-id-adjoin: [u], 
csm-id: 1(X), 
csm-adjoin: (s;u), 
csm-ap: (s)x, 
unit: Unit, 
trivial-cube-set: (), 
cubical-type-at: A(a), 
face-type: 𝔽, 
constant-cubical-type: (X), 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}, 
cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u), 
interval-1: 1(𝕀), 
nc-1: (i1), 
cube-set-restriction: f(s), 
nh-id: 1, 
cube+: cube+(I;i), 
functor-arrow: arrow(F), 
cubical-path-condition': cubical-path-condition'(Gamma;A;I;i;rho;phi;u;a1), 
names: names(I), 
bool: 𝔹, 
it: ⋅, 
uiff: uiff(P;Q), 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
bdd-distributive-lattice: BoundedDistributiveLattice, 
rev_uimplies: rev_uimplies(P;Q), 
csm-ap-term: (t)s, 
cubical-term: {X ⊢ _:A}
Lemmas referenced : 
csm-ap-term-cube+, 
istype-cubical-term, 
cubical-subset_wf, 
add-name_wf, 
cube-set-restriction_wf, 
face-presheaf_wf2, 
nc-s_wf, 
f-subset-add-name, 
csm-ap-type_wf, 
csm-comp_wf, 
formal-cube_wf1, 
subset-iota_wf, 
context-map_wf, 
I_cube_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
istype-nat, 
fset-member_wf, 
nat_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
istype-void, 
fset_wf, 
cubical-type_wf, 
cubical_set_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
context-subset-is-cubical-subset, 
canonical-section_wf, 
face-type_wf, 
subtype_rel_self, 
iff_weakening_equal, 
fl-morph-id, 
face-type-ap-morph, 
cubical_set_cumulativity-i-j, 
nc-0_wf, 
csm-ap-comp-type, 
cube-context-adjoin_wf, 
interval-type_wf, 
csm-id-adjoin_wf-interval-0, 
cube+_wf, 
cube_set_map_wf, 
csm-comp-assoc, 
context-map-comp2, 
cube+_interval-0, 
nc-1_wf, 
csm-id-adjoin_wf-interval-1, 
cube+_interval-1, 
context-subset-map, 
trivial-cube-set_wf, 
it_wf, 
context-subset_wf, 
cubical-term_wf, 
csm-canonical-section-face-type-0, 
cubical-subset-is-context-subset-canonical, 
cubical-term-eqcd, 
cubical-type-subtype-cubical-subset, 
csm-ap-term_wf, 
equal_functionality_wrt_subtype_rel2, 
cubical-type-cumulativity2, 
constrained-cubical-term_wf, 
csm-id-adjoin_wf, 
interval-1_wf, 
cubical-type-at_wf_face-type, 
subset-cubical-term2, 
sub_cubical_set_self, 
csm-face-type, 
csm-context-subset-subtype3, 
cubical-type-at_wf, 
cubical_type_at_pair_lemma, 
dM1-sq-singleton-empty, 
cubical-term-at_wf, 
nh-id_wf, 
cubical-type-cumulativity, 
csm-subtype-cubical-subset, 
csm-canonical-section-face-type-1, 
cubical-subset-I_cube, 
csm-ap-term-at, 
csm-ap-type-at, 
csm-ap-csm-comp, 
I_cube_pair_redex_lemma, 
csm-ap_wf, 
name-morph-satisfies_wf, 
arrow_pair_lemma, 
nh-comp-sq, 
names_wf, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
dM-lift-1, 
not-added-name, 
dM-lift-inc, 
name-morph-satisfies-comp, 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
lattice-meet_wf, 
lattice-join_wf, 
nh-comp_wf, 
nh-id-right, 
names-hom_wf, 
nh-comp-assoc, 
s-comp-nc-1, 
cubical-term-equal, 
subset-cubical-type, 
context-subset-is-subset, 
subtype_rel_wf, 
cubical-subset-I_cube-member, 
context-map_wf_cubical-subset, 
csm-ap-context-map, 
cube-set-restriction-comp, 
cube_set_restriction_pair_lemma, 
csm-cubical-type-ap-morph, 
cubical-type-ap-morph_wf, 
istype-cubical-type-at, 
subtype_rel-equal, 
cube-set-restriction-id, 
cubical-path-condition'_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation_alt, 
setElimination, 
rename, 
because_Cache, 
independent_isectElimination, 
dependent_functionElimination, 
universeIsType, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
Error :memTop, 
sqequalRule, 
independent_pairFormation, 
voidElimination, 
setIsType, 
functionIsType, 
applyEquality, 
intEquality, 
instantiate, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
inhabitedIsType, 
hyp_replacement, 
cumulativity, 
equalityIstype, 
functionExtensionality, 
equalityElimination, 
promote_hyp, 
productEquality, 
isectEquality, 
applyLambdaEquality
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].  \mforall{}[rho:Gamma(I+i)].
    \mforall{}phi:\mBbbF{}(I)
        \mforall{}[u:\{I+i,s(phi)  \mvdash{}  \_:(A)<rho>  o  iota\}].
        \mforall{}[v:\{formal-cube(I)  \mvdash{}  \_:((A)<rho>  o  cube+(I;i))[1(\mBbbI{})][canonical-section(();\mBbbF{};I;\mcdot{};phi) 
                                                        |{}\mrightarrow{}  ((u)cube+(I;i))[1(\mBbbI{})]]\}].
            (v(1)  \mmember{}  cubical-path-1(Gamma;A;I;i;rho;phi;u))
Date html generated:
2020_05_20-PM-04_29_18
Last ObjectModification:
2020_04_20-AM-10_59_18
Theory : cubical!type!theory
Home
Index