Nuprl Lemma : pi-comp-uniformity

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[B:{Gamma.A ⊢ _}]. ∀[cA:Gamma ⊢ CompOp(A)]. ∀[cB:Gamma.A ⊢ CompOp(B)].
  composition-uniformity(Gamma;ΠB;pi-comp(Gamma;A;B;cA;cB))


Proof




Definitions occuring in Statement :  pi-comp: pi-comp(Gamma;A;B;cA;cB) composition-op: Gamma ⊢ CompOp(A) composition-uniformity: composition-uniformity(Gamma;A;comp) cubical-pi: ΠB cube-context-adjoin: X.A cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] composition-uniformity: composition-uniformity(Gamma;A;comp) all: x:A. B[x] member: t ∈ T nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: cubical-pi: ΠB cubical-pi-family: cubical-pi-family(X;A;B;I;a) squash: T pi-comp: pi-comp(Gamma;A;B;cA;cB) subtype_rel: A ⊆B true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] has-value: (a)↓ let: let int-deq: IntDeq nat-deq: NatDeq pi-comp-nu: pi-comp-nu(Gamma;A;cA;I;i;rho;J;f;u1;j) filling-op: filling-op(Gamma;A) cube-set-restriction: f(s) pi2: snd(t) face-presheaf: 𝔽 fl-morph: <f> fl-lift: fl-lift(T;eq;L;eqL;f0;f1) face-lattice-property free-dist-lattice-with-constraints-property lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum lattice-0: 0 record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt empty-fset: {} nil: [] it: cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) bdd-distributive-lattice: BoundedDistributiveLattice lattice-point: Point(l) I_cube: A(I) functor-ob: ob(F) pi1: fst(t) composition-op: Gamma ⊢ CompOp(A) pi-comp-app: pi-comp-app(Gamma;A;I;i;rho;phi;mu;J;f;j;nu) bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) subset-trans: subset-trans(I;J;f;x) csm-comp: F compose: g uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) csm-ap-term: (t)s csm-ap: (s)x csm-ap-type: (AF)s cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cc-snd: q subset-iota: iota cc-fst: p csm-adjoin: (s;u) subset_iota: subset_iota(psi) canonical-section: canonical-section(Gamma;A;I;rho;a) csm-id-adjoin: [u] context-map: <rho> csm-id: 1(X) functor-arrow: arrow(F) cc-adjoin-cube: (v;u) cube-context-adjoin: X.A sq_type: SQType(T) section-iota: section-iota(Gamma;A;I;rho;a) pi-comp-lambda: pi-comp-lambda(Gamma;A;I;i;rho;lambda;J;f;j;nu) cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u)
Lemmas referenced :  cubical-type-ap-morph_wf cubical-pi_wf cube-set-restriction_wf add-name_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le nc-1_wf pi-comp_wf3 cubical_type_at_pair_lemma cubical_type_ap_morph_pair_lemma new-name_wf cubical-type-at_wf names-hom_wf istype-cubical-type-at cube-context-adjoin_wf cc-adjoin-cube_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j nh-comp_wf subtype_rel-equal cube-set-restriction-comp equal_wf squash_wf true_wf istype-universe I_cube_wf subtype_rel_self iff_weakening_equal cc-adjoin-cube-restriction cubical-path-0_wf istype-cubical-term cubical-subset_wf face-presheaf_wf2 nc-s_wf f-subset-add-name csm-ap-type_wf csm-comp_wf formal-cube_wf1 subset-iota_wf context-map_wf fset-member_wf nat_wf int-deq_wf istype-void istype-nat strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self fset_wf composition-op_wf cubical-type_wf cubical_set_wf value-type-has-value not_wf set-value-type int-value-type nc-e'_wf nc-r_wf trivial-member-add-name1 nat-deq_wf nc-r'-to-e' nh-comp-assoc nc-e'-lemma6 fill_from_comp_wf nc-r'-r nc-r'_wf lattice-0_wf face_lattice_wf trivial-section_wf nc-0_wf nc-r'-nc-0 cubical-path-condition-0 cubical-path-condition_wf member-cubical-path-0-0 member-empty-cubical-subset cubical-term-equal2 fl-morph_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf subset-trans_wf csm-ap-term_wf cubical-term_wf fl-morph-restriction nc-e'-lemma3 cube_set_map_wf csm-ap-comp-type cubical-type-cumulativity csm-equal2 cubical-subset-I_cube name-morph-satisfies_wf name-morph-satisfies-comp uiff_transitivity csm-cubical-pi cubical-app_wf csm-adjoin_wf cc-fst_wf cc-snd_wf cubical-term-eqcd subset-trans-iota-lemma subset_iota_wf csm-id-adjoin_wf canonical-section_wf arrow_pair_lemma subtype_base_sq base_wf cube_set_map_cumulativity-i-j equal_functionality_wrt_subtype_rel2 section-iota_wf pi-comp-lambda_wf pi-comp-nu_wf pi-comp-app_wf nc-e'-lemma2 r-comp-nc-0 nc-r'-nc-1 nc-e'-lemma1 pi-comp-nu-property face-lattice-property free-dist-lattice-with-constraints-property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_set_memberEquality_alt setElimination rename because_Cache dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  sqequalRule independent_pairFormation universeIsType voidElimination applyEquality applyLambdaEquality imageMemberEquality baseClosed imageElimination functionExtensionality inhabitedIsType equalityIstype equalityTransitivity equalitySymmetry functionIsType instantiate universeEquality productElimination setIsType intEquality setEquality callbyvalueReduce hyp_replacement productIsType sqequalBase productEquality cumulativity isectEquality baseApply closedConclusion

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[B:\{Gamma.A  \mvdash{}  \_\}].  \mforall{}[cA:Gamma  \mvdash{}  CompOp(A)].
\mforall{}[cB:Gamma.A  \mvdash{}  CompOp(B)].
    composition-uniformity(Gamma;\mPi{}A  B;pi-comp(Gamma;A;B;cA;cB))



Date html generated: 2020_05_20-PM-04_03_54
Last ObjectModification: 2020_04_20-PM-05_16_00

Theory : cubical!type!theory


Home Index