Nuprl Lemma : pi-comp-uniformity
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[B:{Gamma.A ⊢ _}]. ∀[cA:Gamma ⊢ CompOp(A)]. ∀[cB:Gamma.A ⊢ CompOp(B)].
  composition-uniformity(Gamma;ΠA B;pi-comp(Gamma;A;B;cA;cB))
Proof
Definitions occuring in Statement : 
pi-comp: pi-comp(Gamma;A;B;cA;cB)
, 
composition-op: Gamma ⊢ CompOp(A)
, 
composition-uniformity: composition-uniformity(Gamma;A;comp)
, 
cubical-pi: ΠA B
, 
cube-context-adjoin: X.A
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
composition-uniformity: composition-uniformity(Gamma;A;comp)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
and: P ∧ Q
, 
prop: ℙ
, 
cubical-pi: ΠA B
, 
cubical-pi-family: cubical-pi-family(X;A;B;I;a)
, 
squash: ↓T
, 
pi-comp: pi-comp(Gamma;A;B;cA;cB)
, 
subtype_rel: A ⊆r B
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
has-value: (a)↓
, 
let: let, 
int-deq: IntDeq
, 
nat-deq: NatDeq
, 
pi-comp-nu: pi-comp-nu(Gamma;A;cA;I;i;rho;J;f;u1;j)
, 
filling-op: filling-op(Gamma;A)
, 
cube-set-restriction: f(s)
, 
pi2: snd(t)
, 
face-presheaf: 𝔽
, 
fl-morph: <f>
, 
fl-lift: fl-lift(T;eq;L;eqL;f0;f1)
, 
face-lattice-property, 
free-dist-lattice-with-constraints-property, 
lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac)
, 
lattice-extend: lattice-extend(L;eq;eqL;f;ac)
, 
lattice-fset-join: \/(s)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
fset-image: f"(s)
, 
f-union: f-union(domeq;rngeq;s;x.g[x])
, 
list_accum: list_accum, 
lattice-0: 0
, 
record-select: r.x
, 
face_lattice: face_lattice(I)
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
empty-fset: {}
, 
nil: []
, 
it: ⋅
, 
cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u)
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
lattice-point: Point(l)
, 
I_cube: A(I)
, 
functor-ob: ob(F)
, 
pi1: fst(t)
, 
composition-op: Gamma ⊢ CompOp(A)
, 
pi-comp-app: pi-comp-app(Gamma;A;I;i;rho;phi;mu;J;f;j;nu)
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
, 
subset-trans: subset-trans(I;J;f;x)
, 
csm-comp: G o F
, 
compose: f o g
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
csm-ap-term: (t)s
, 
csm-ap: (s)x
, 
csm-ap-type: (AF)s
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cc-snd: q
, 
subset-iota: iota
, 
cc-fst: p
, 
csm-adjoin: (s;u)
, 
subset_iota: subset_iota(psi)
, 
canonical-section: canonical-section(Gamma;A;I;rho;a)
, 
csm-id-adjoin: [u]
, 
context-map: <rho>
, 
csm-id: 1(X)
, 
functor-arrow: arrow(F)
, 
cc-adjoin-cube: (v;u)
, 
cube-context-adjoin: X.A
, 
sq_type: SQType(T)
, 
section-iota: section-iota(Gamma;A;I;rho;a)
, 
pi-comp-lambda: pi-comp-lambda(Gamma;A;I;i;rho;lambda;J;f;j;nu)
, 
cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u)
Lemmas referenced : 
cubical-type-ap-morph_wf, 
cubical-pi_wf, 
cube-set-restriction_wf, 
add-name_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
nc-1_wf, 
pi-comp_wf3, 
cubical_type_at_pair_lemma, 
cubical_type_ap_morph_pair_lemma, 
new-name_wf, 
cubical-type-at_wf, 
names-hom_wf, 
istype-cubical-type-at, 
cube-context-adjoin_wf, 
cc-adjoin-cube_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
nh-comp_wf, 
subtype_rel-equal, 
cube-set-restriction-comp, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
I_cube_wf, 
subtype_rel_self, 
iff_weakening_equal, 
cc-adjoin-cube-restriction, 
cubical-path-0_wf, 
istype-cubical-term, 
cubical-subset_wf, 
face-presheaf_wf2, 
nc-s_wf, 
f-subset-add-name, 
csm-ap-type_wf, 
csm-comp_wf, 
formal-cube_wf1, 
subset-iota_wf, 
context-map_wf, 
fset-member_wf, 
nat_wf, 
int-deq_wf, 
istype-void, 
istype-nat, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
fset_wf, 
composition-op_wf, 
cubical-type_wf, 
cubical_set_wf, 
value-type-has-value, 
not_wf, 
set-value-type, 
int-value-type, 
nc-e'_wf, 
nc-r_wf, 
trivial-member-add-name1, 
nat-deq_wf, 
nc-r'-to-e', 
nh-comp-assoc, 
nc-e'-lemma6, 
fill_from_comp_wf, 
nc-r'-r, 
nc-r'_wf, 
lattice-0_wf, 
face_lattice_wf, 
trivial-section_wf, 
nc-0_wf, 
nc-r'-nc-0, 
cubical-path-condition-0, 
cubical-path-condition_wf, 
member-cubical-path-0-0, 
member-empty-cubical-subset, 
cubical-term-equal2, 
fl-morph_wf, 
lattice-point_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
lattice-meet_wf, 
lattice-join_wf, 
subset-trans_wf, 
csm-ap-term_wf, 
cubical-term_wf, 
fl-morph-restriction, 
nc-e'-lemma3, 
cube_set_map_wf, 
csm-ap-comp-type, 
cubical-type-cumulativity, 
csm-equal2, 
cubical-subset-I_cube, 
name-morph-satisfies_wf, 
name-morph-satisfies-comp, 
uiff_transitivity, 
csm-cubical-pi, 
cubical-app_wf, 
csm-adjoin_wf, 
cc-fst_wf, 
cc-snd_wf, 
cubical-term-eqcd, 
subset-trans-iota-lemma, 
subset_iota_wf, 
csm-id-adjoin_wf, 
canonical-section_wf, 
arrow_pair_lemma, 
subtype_base_sq, 
base_wf, 
cube_set_map_cumulativity-i-j, 
equal_functionality_wrt_subtype_rel2, 
section-iota_wf, 
pi-comp-lambda_wf, 
pi-comp-nu_wf, 
pi-comp-app_wf, 
nc-e'-lemma2, 
r-comp-nc-0, 
nc-r'-nc-1, 
nc-e'-lemma1, 
pi-comp-nu-property, 
face-lattice-property, 
free-dist-lattice-with-constraints-property
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_set_memberEquality_alt, 
setElimination, 
rename, 
because_Cache, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
Error :memTop, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
voidElimination, 
applyEquality, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
functionExtensionality, 
inhabitedIsType, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
instantiate, 
universeEquality, 
productElimination, 
setIsType, 
intEquality, 
setEquality, 
callbyvalueReduce, 
hyp_replacement, 
productIsType, 
sqequalBase, 
productEquality, 
cumulativity, 
isectEquality, 
baseApply, 
closedConclusion
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[B:\{Gamma.A  \mvdash{}  \_\}].  \mforall{}[cA:Gamma  \mvdash{}  CompOp(A)].
\mforall{}[cB:Gamma.A  \mvdash{}  CompOp(B)].
    composition-uniformity(Gamma;\mPi{}A  B;pi-comp(Gamma;A;B;cA;cB))
Date html generated:
2020_05_20-PM-04_03_54
Last ObjectModification:
2020_04_20-PM-05_16_00
Theory : cubical!type!theory
Home
Index