Nuprl Lemma : pi-comp-uniformity
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[B:{Gamma.A ⊢ _}]. ∀[cA:Gamma ⊢ CompOp(A)]. ∀[cB:Gamma.A ⊢ CompOp(B)].
  composition-uniformity(Gamma;ΠA B;pi-comp(Gamma;A;B;cA;cB))
Proof
Definitions occuring in Statement : 
pi-comp: pi-comp(Gamma;A;B;cA;cB), 
composition-op: Gamma ⊢ CompOp(A), 
composition-uniformity: composition-uniformity(Gamma;A;comp), 
cubical-pi: ΠA B, 
cube-context-adjoin: X.A, 
cubical-type: {X ⊢ _}, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
composition-uniformity: composition-uniformity(Gamma;A;comp), 
all: ∀x:A. B[x], 
member: t ∈ T, 
nat: ℕ, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
and: P ∧ Q, 
prop: ℙ, 
cubical-pi: ΠA B, 
cubical-pi-family: cubical-pi-family(X;A;B;I;a), 
squash: ↓T, 
pi-comp: pi-comp(Gamma;A;B;cA;cB), 
subtype_rel: A ⊆r B, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
has-value: (a)↓, 
let: let, 
int-deq: IntDeq, 
nat-deq: NatDeq, 
pi-comp-nu: pi-comp-nu(Gamma;A;cA;I;i;rho;J;f;u1;j), 
filling-op: filling-op(Gamma;A), 
cube-set-restriction: f(s), 
pi2: snd(t), 
face-presheaf: 𝔽, 
fl-morph: <f>, 
fl-lift: fl-lift(T;eq;L;eqL;f0;f1), 
face-lattice-property, 
free-dist-lattice-with-constraints-property, 
lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac), 
lattice-extend: lattice-extend(L;eq;eqL;f;ac), 
lattice-fset-join: \/(s), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
fset-image: f"(s), 
f-union: f-union(domeq;rngeq;s;x.g[x]), 
list_accum: list_accum, 
lattice-0: 0, 
record-select: r.x, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
empty-fset: {}, 
nil: [], 
it: ⋅, 
cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u), 
bdd-distributive-lattice: BoundedDistributiveLattice, 
lattice-point: Point(l), 
I_cube: A(I), 
functor-ob: ob(F), 
pi1: fst(t), 
composition-op: Gamma ⊢ CompOp(A), 
pi-comp-app: pi-comp-app(Gamma;A;I;i;rho;phi;mu;J;f;j;nu), 
bounded-lattice-hom: Hom(l1;l2), 
lattice-hom: Hom(l1;l2), 
subset-trans: subset-trans(I;J;f;x), 
csm-comp: G o F, 
compose: f o g, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
csm-ap-term: (t)s, 
csm-ap: (s)x, 
csm-ap-type: (AF)s, 
cubical-term: {X ⊢ _:A}, 
cubical-type: {X ⊢ _}, 
cc-snd: q, 
subset-iota: iota, 
cc-fst: p, 
csm-adjoin: (s;u), 
subset_iota: subset_iota(psi), 
canonical-section: canonical-section(Gamma;A;I;rho;a), 
csm-id-adjoin: [u], 
context-map: <rho>, 
csm-id: 1(X), 
functor-arrow: arrow(F), 
cc-adjoin-cube: (v;u), 
cube-context-adjoin: X.A, 
sq_type: SQType(T), 
section-iota: section-iota(Gamma;A;I;rho;a), 
pi-comp-lambda: pi-comp-lambda(Gamma;A;I;i;rho;lambda;J;f;j;nu), 
cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u)
Lemmas referenced : 
cubical-type-ap-morph_wf, 
cubical-pi_wf, 
cube-set-restriction_wf, 
add-name_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
nc-1_wf, 
pi-comp_wf3, 
cubical_type_at_pair_lemma, 
cubical_type_ap_morph_pair_lemma, 
new-name_wf, 
cubical-type-at_wf, 
names-hom_wf, 
istype-cubical-type-at, 
cube-context-adjoin_wf, 
cc-adjoin-cube_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
nh-comp_wf, 
subtype_rel-equal, 
cube-set-restriction-comp, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
I_cube_wf, 
subtype_rel_self, 
iff_weakening_equal, 
cc-adjoin-cube-restriction, 
cubical-path-0_wf, 
istype-cubical-term, 
cubical-subset_wf, 
face-presheaf_wf2, 
nc-s_wf, 
f-subset-add-name, 
csm-ap-type_wf, 
csm-comp_wf, 
formal-cube_wf1, 
subset-iota_wf, 
context-map_wf, 
fset-member_wf, 
nat_wf, 
int-deq_wf, 
istype-void, 
istype-nat, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
fset_wf, 
composition-op_wf, 
cubical-type_wf, 
cubical_set_wf, 
value-type-has-value, 
not_wf, 
set-value-type, 
int-value-type, 
nc-e'_wf, 
nc-r_wf, 
trivial-member-add-name1, 
nat-deq_wf, 
nc-r'-to-e', 
nh-comp-assoc, 
nc-e'-lemma6, 
fill_from_comp_wf, 
nc-r'-r, 
nc-r'_wf, 
lattice-0_wf, 
face_lattice_wf, 
trivial-section_wf, 
nc-0_wf, 
nc-r'-nc-0, 
cubical-path-condition-0, 
cubical-path-condition_wf, 
member-cubical-path-0-0, 
member-empty-cubical-subset, 
cubical-term-equal2, 
fl-morph_wf, 
lattice-point_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
lattice-meet_wf, 
lattice-join_wf, 
subset-trans_wf, 
csm-ap-term_wf, 
cubical-term_wf, 
fl-morph-restriction, 
nc-e'-lemma3, 
cube_set_map_wf, 
csm-ap-comp-type, 
cubical-type-cumulativity, 
csm-equal2, 
cubical-subset-I_cube, 
name-morph-satisfies_wf, 
name-morph-satisfies-comp, 
uiff_transitivity, 
csm-cubical-pi, 
cubical-app_wf, 
csm-adjoin_wf, 
cc-fst_wf, 
cc-snd_wf, 
cubical-term-eqcd, 
subset-trans-iota-lemma, 
subset_iota_wf, 
csm-id-adjoin_wf, 
canonical-section_wf, 
arrow_pair_lemma, 
subtype_base_sq, 
base_wf, 
cube_set_map_cumulativity-i-j, 
equal_functionality_wrt_subtype_rel2, 
section-iota_wf, 
pi-comp-lambda_wf, 
pi-comp-nu_wf, 
pi-comp-app_wf, 
nc-e'-lemma2, 
r-comp-nc-0, 
nc-r'-nc-1, 
nc-e'-lemma1, 
pi-comp-nu-property, 
face-lattice-property, 
free-dist-lattice-with-constraints-property
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_set_memberEquality_alt, 
setElimination, 
rename, 
because_Cache, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
Error :memTop, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
voidElimination, 
applyEquality, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
functionExtensionality, 
inhabitedIsType, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
instantiate, 
universeEquality, 
productElimination, 
setIsType, 
intEquality, 
setEquality, 
callbyvalueReduce, 
hyp_replacement, 
productIsType, 
sqequalBase, 
productEquality, 
cumulativity, 
isectEquality, 
baseApply, 
closedConclusion
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[B:\{Gamma.A  \mvdash{}  \_\}].  \mforall{}[cA:Gamma  \mvdash{}  CompOp(A)].
\mforall{}[cB:Gamma.A  \mvdash{}  CompOp(B)].
    composition-uniformity(Gamma;\mPi{}A  B;pi-comp(Gamma;A;B;cA;cB))
Date html generated:
2020_05_20-PM-04_03_54
Last ObjectModification:
2020_04_20-PM-05_16_00
Theory : cubical!type!theory
Home
Index